
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Bayesian Optimization of a Free-Electron Laser
J. Duris, D. Kennedy, A. Hanuka, J. Shtalenkova, A. Edelen, P. Baxevanis, A. Egger, T.

Cope, M. McIntire, S. Ermon, and D. Ratner
Phys. Rev. Lett. 124, 124801 — Published 25 March 2020

DOI: 10.1103/PhysRevLett.124.124801

http://dx.doi.org/10.1103/PhysRevLett.124.124801


Bayesian optimization of a free-electron laser

J. Duris,1 D. Kennedy,1, 2 A. Hanuka,1 J. Shtalenkova,1 A. Edelen,1

P. Baxevanis,1 A. Egger,1 T. Cope,1 M. McIntire,3 S. Ermon,3 and D. Ratner1

1SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
2Department of Physics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA

3Department of Computer Science, Stanford University, Stanford, CA 94305, USA
(Dated: February 24, 2020)

The Linac Coherent Light Source X-ray free-electron laser is a complex scientific apparatus which
changes configurations multiple times per day, necessitating fast tuning strategies to reduce setup
time for successive experiments. To this end, we employ a Bayesian approach to maximizing X-
ray laser pulse energy by controlling groups of quadrupole magnets. A Gaussian process model
provides probabilistic predictions for the machine response with respect to control parameters,
enabling a balance of exploration and exploitation in the search for the global optimum. We show
that the model parameters can be learned from archived scans, and correlations between devices
can be extracted from the beam transport. The result is a sample-efficient optimization routine,
combining both historical data and knowledge of accelerator physics to significantly outperform
existing optimizers.

Modern large-scale scientific experiments have com-
plicated operational requirements, with performance de-
graded by errors in controls and dependencies on drift-
ing or random variables. A prime example of this is the
Linac Coherent Light Source (LCLS) [1], an x-ray free
electron laser (FEL) user facility that supports a wide
array of scientific experiments. At LCLS, skilled human
operators tune dozens of control parameters on-the-fly
to achieve custom photon beam characteristics, and this
process cuts into valuable time allocated for each user
experiment. Model-independent optimizers can help au-
tomate tuning, with successful demonstrations using sim-
plex [2, 3], extremum seeking [4–6], and robust conjugate
direction search [7, 8]. However, these methods require a
large number of expensive acquisitions and can become
stuck in local optima. To improve the efficiency of opti-
mization beyond these methods, a model of the system is
necessary [9]; in this work, we use Bayesian optimization
with Gaussian process (GP) models during live tuning of
LCLS. First, we use archived data to estimate the length
scales of tuning parameters in the model. Second, we
show that adding physics-inspired correlations between
parameters further speeds convergence. Finally, we dis-
cuss possible directions for improvement.

Bayesian optimization is a sample efficient and
gradient-free approach to global optimization of black-
box functions with noisy outputs [10–12]. This efficiency
comes from application of Bayes’ theorem to incorpo-
rate prior knowledge and previous steps to maximize
the value of each new measurement. Numerical opti-
mization of an acquisition function, incorporating the
model’s expectation and uncertainty, guides the selection
of each new point to sample. This gives Bayesian op-
timization the capability of balancing exploration with
exploitation, which makes it ideal for optimizing noisy
or uncertain targets. Prior knowledge such as historical
data, simulation, or theory can improve the efficiency of
optimization and constrain the search in low signal-to-

noise states. Bayesian optimization has been applied to
a quickly growing number of domains; for example, re-
source prospecting [13, 14], active policy search for rein-
forcement learning [15], neural network parameter tuning
[16], experimental control [17], etc. Large scientific ex-
periments are expensive to run, have noisy and uncertain
inputs and outputs, and are supported by detailed phys-
ical theory, simulations, and extensive data sets; all of
these qualities make complex physics experiments well-
suited for control via Bayesian optimization.

A Gaussian process (GP) is a popular choice of model
for Bayesian optimization [18]. Whereas a Gaussian
distribution is characterized by a mean and covariance
y ∼ N(µ,Σ), a Gaussian process is determined by mean
and covariance functions: f(x) ∼ GP (µ(x), k(x,x)),
where x are possible inputs to the objective. The mean
µ(x) is a function encoding the expected value of the
objective function. Prior to updating the model with ob-
servations, µ(x) may encode prior understanding of the
objective, such as a fit to data or the most likely value
of the objective given random samples on a relevant do-
main, or may be set to zero without loss of generality.
As observations are added to the GP, the mean function
begins to interpolate near measured points, and repre-
sents the most probable value of the objective given the
measured data. The prediction’s uncertainty σ(x) incor-
porates the measured data with a covariance function or
kernel k(x,x′), which describes the similarity between
pairs of points x and x′. Parameters of the mean and
covariance functions are referred to as hyperparameters
and are fit to a training data set by maximizing the prob-
ability of the data given the model, which incorporates a
measure of the data fit and a natural model complexity
penalty which discourages over-fitting (see Section 5.4.1
of [18]). Whereas the mean function may change day to
day, the covariance function is fundamental to the un-
derlying physics and thus is relatively constant and more
robust for online estimation of the observed data.
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FIG. 1: LCLS beamline showing locations of linacs, quadrupole magnets, and undulator magnets. A focusing
system comprised of nearly 200 quadrupoles (upper lines denote focusing whereas lower lines denote defocusing for

one plane) transports the electron beam downstream (from left to right above) and several groups of matching
quadrupole magnets (shown in red) are routinely used to match the beam into the focusing system. An electron

beam dump and X-ray pulse energy measurement system (not shown) are positioned downstream of the undulators.
Our studies focus on 8 matching quads in the third linac and 4 in the transport line leading to the undulators.

In contrast to parametric models such as neural net-
works, GPs are non-parametric models, meaning that
they are constructed directly from the training instances
themselves. This allows for the model’s complexity to
grow with the number of observations and predicts a
class of functions consistent with a previously learned or
physics motivated covariance structure near the current
observations. Furthermore, in addition to the mean, GPs
also provide predictions’ uncertainties, which are needed
to construct the acquisition function. For both of these
reasons, GPs are popular models for Bayesian optimiza-
tion.

In this Letter we apply Gaussian process optimization
to the problem of maximizing the LCLS x-ray FEL pulse
energy. The FEL instability is a collective effect so per-
formance depends strongly on the current density and
therefore beam size along the FEL undulator line. A
series of quadrupole magnets (with positions shown in
Figure 1) transports and focuses the beam into the un-
dulator line which is composed of 30 undulator modules
of length 3.3 m, each followed by 0.6 m of space for di-
agnostics and corrector magnets to keep the beam on
axis and quadrupole magnets to provide strong focus-
ing and maintain a small beam size. The FEL pulse
energy is therefore a function of all the quadrupole mag-
net strengths (field integral in kiloGauss, kG) and the
input electron beam parameters. The machine is recon-
figured at least twice per day, and hysteresis in magnets
and motors throughout the machine necessitates retuning
following each change. Consequently, LCLS operators
perform tuning scans to optimize a subset (see Fig. 1)
of the quadrupoles’ strengths many times per day. In
2015 we found that LCLS was spending more than 500
hours/year on the single task of quadrupole optimization
due to the high dimensional parameter space. Reducing
this lost experimental time became an important goal for
operations.

A central component of Bayesian optimization is a sys-
tem model. In our case, we model the FEL pulse energy
dependence on quadrupole amplitude with a Gaussian

process. Given the FEL pulse energy’s smooth response
to quadrupole magnets when all other parameters are
fixed, we choose the popular radial basis function (RBF)
kernel,

kRBF(x,x′) = σ2
f exp(−1

2
(x− x′)TΣ(x− x′)) (1)

Here, x and x′ are vectors with quadrupole values as co-
ordinates, T denotes a matrix transpose operation, σ2

f is
the covariance function amplitude, and Σ is a diagonal
matrix of inverse square length scales. The length scales
set the distance over which the function changes in each
dimension. The amplitude captures the variance of the
target function values with respect to variations in the
inputs and therefore determines the prior prediction un-
certainty far from any sampled points. The amplitude
and length scale hyperparameters are chosen by fits to
archived data; see the Supplemental Material for more
details on the choice of the kernel and its hyperparam-
eters [19]. Learning the covariance of the function (e.g.
via a GP fit) rather than the function itself (e.g. a neural
network fit) provides uncertainty estimates by favoring a
subset of possible functions compatible with observations
and allows for robust optimization since the peak of the
objective may change day-to-day, but the general shape
remains the same.

Online optimization proceeds by first measuring the
initial state of the machine and then initializing the Gaus-
sian process model with the appropriate kernel and first
measured point. The GP provides a probabilistic surro-
gate model for the machine, and an upper confidence
bound (UCB) acquisition function [20] is constructed
from the GP prediction mean and standard deviation:
UCB(x) = µ(x) + κσ(x), where κ is of order unity. The
UCB acquisition function employs a strategy of optimism
in the face of uncertainty, balancing the trade-off between
exploiting known promising regions (via the prediction
mean term µ(x)) and exploring uncertain areas (via the
prediction uncertainty σ(x)). The point maximizing the
UCB function is chosen for the next measurement, which
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FIG. 2: (a) Comparison of optimization of FEL pulse
energy over 12 quadrupole magnets for Bayesian

optimization (red curves) vs Nelder-Mead simplex
optimization (blue). Each scan was performed 4 times
with identical starting conditions, shown with different
dashing. Each step corresponds to approximately 3 to 4

seconds. (b) Simulations using the conditions of (a).
100 individual scans for each method, with means

shown by thick lines, are consistent with measurements.
Note occasional drops in FEL pulse energy, e.g. at step

30 in the solid red line, are caused by momentary
machine glitches. It is encouraging that the optimizer is

not thrown off course by such brief glitches.

is then acquired and added to the GP, finishing one step
through the optimization process (see the Supplemental
Material for details of our specific implementation [19]).
The optimization continues in this way until reaching a
time limit or a target performance.

There are many Gaussian process codes available [21–
25], and many of these packages employ techniques to
limit computation times for large data sets. In our case,
we use an online GP model [26] interfaced to LCLS via
the Ocelot optimization framework [3]. The online model
saves frequent computations to speed subsequent predic-
tions. In practice at LCLS, computation time per step
is shorter than the acquisition time (1 to 2 seconds to
set magnets and allow feedback systems to correct the
trajectory and 1 second to measure FEL pulse energies
for 120 shots).

Figure 2a shows results from live optimization of the
FEL pulse energy simultaneously on 12 quadrupoles. In
this example, Bayesian optimization is approximately 4
times faster than LCLS’s standard Nelder-Mead simplex
algorithm, and reaches a higher optimum. The different
lines for each algorithm correspond to scans with identi-
cal starting conditions.

We also compare simplex and Bayesian optimization in
a simulation environment. Ideally we would use physics
codes such as elegant [27] and Genesis [28] to model the
transport and FEL behavior, however due to mismatch
between the codes and measured performance, as well as
computational expense for each simulation, we instead
fit a beam transport model as described below. Though

the beam transport model does not capture the full com-
plexity of the real machine, it allows us to compare the
relative performance of simplex and Bayesian optimiza-
tion with a simulated objective function, which we find
consistent with live scans (Fig. 2b).

We can further improve the optimizer by leveraging our
knowledge of accelerator physics to introduce correlations
to the model. Correlated kernels become advantageous
when a system’s response to one input dimension depends
strongly on one or more of the other input dimensions as
is exemplified with a correlated binormal test function
in Figure 3a. Figure 3b shows a GP regression on noisy
samples (RMS noise is 10% of the signal peak) from a
correlated ground truth (Fig. 3a) with an isotropic ker-
nel, while Figure 3c shows a GP regression on the same
samples but with a kernel sharing the same correlation as
the ground truth (ρ = 0.8). The latter model is more rep-
resentative of the system. To demonstrate the effective-
ness of a correlated model for regulating the system, we
perform Bayesian optimization with and without kernel
correlations for various dimensional spaces with nearest-
neighbor correlation coefficients of ρi,i+1 = 0.5. Each
point in Figure 3d shows the average number of steps
to achieve > 90% of the ground truth peak amplitude
for 100 runs starting at a random position such that the
starting signal-to-noise ratio is unity. The relative effi-
ciency of the correlated kernel grows exponentially with
the number of dimensions, making it attractive for high-
dimensional optimization at accelerators.

FEL quadrupole optimization is an example of a highly
correlated system. Strong focusing in charged par-
ticle transport relies on a series of oppositely polar-
ized quadrupole fields [29]. Each quadrupole focuses in
one transverse plane while defocusing in the orthogo-
nal plane, and repeated application of alternate focus-
ing/defocusing results in net focusing in both planes. In-
creasing the strength of one quadrupole field necessitates
increasing the strength of the next quadrupole (with op-
posite sign) to achieve net focusing, resulting in negative
correlations between nearby focusing elements. Figure 4a
shows the average FEL pulse energy response to varia-
tion of two adjacent quadrupoles in a matching section
just upstream of the FEL undulator magnets (near po-
sition 1400 m in Figure 1). Similarly, correlations exist
between all pairs of quadrupoles.

To find the correlation hyperparameters, we exploit
our knowledge of strong-focusing and FEL physics to cal-
culate correlations from a beam physics transport model.
The FEL pulse energy (denoted as U) is a correlation-
preserving function of the transverse area of the beam,
σ2, averaged along the interaction, with logU ∝ 〈σ2〉−1/3
[30]. As a consequence, the beam size and pulse energy
have similar correlations with respect to variations in the
quadrupole magnets.

We model the average beam size in the undulator line
from a linear transport model [29], with quadrupole val-
ues based on the archived settings. The result shown
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FIG. 3: (a) Ground truth of a 2D multinormal test
function with unit slice widths (evaluated holding all
but one coordinate fixed at a time) and correlation
coefficient of 0.8. (b) GP regression with isotropic

kernel on noisy samples from the ground truth. (c) GP
regression with correlated kernel on identical samples as

b. (d) Bayesian optimization convergence tests on a
correlated ground truth with and without kernel

correlations. Each bar shows the standard error about
the mean for 100 trials. The correlated GP kernel (blue

linear fit) performs as well as optimization of an
isotropic ground truth with an isotropic GP kernel,

growing linearly with the number of dimensions. Steps
to convergence with mismatched kernel grows

exponentially (red exponential fit).

in Figure 4b is a modeled beam size with correlations
that match those of the measured FEL pulse energy (Fig.
4a). Finally, we combine the correlations from the linear
model with the length scales fit from archived data to give
the correlated RBF kernel. In principle, we would calcu-
late correlation hyperparameters from fits to the archive
data, as was done for the length scales. However, due to
sparsity in the sampled data, we find that our modeled
correlations are more accurate. Conversely, in principle
we could follow the same modeling procedure to calcu-
late the length scale hyperparameters, but because our
simple model does not handle details such as FEL satu-
ration, we found empirically that the length scales from
archived data are more accurate.

We tested FEL optimization using GPs built with
and without correlations for four adjacent matching
quadrupole magnets located in the transport between the
accelerator and the FEL undulators. The results, pre-
sented in Figure 4c, show that the correlated GP model
outperforms the uncorrelated GP. Furthermore, we find
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FIG. 4: (a) Average FEL pulse energy vs two adjacent
quadrupoles. The dark spot near the center of the plot
was due to a momentary machine malfunction. (b) The
modeled average electron beam size in the undulator vs
the same quadrupoles shows the same correlations. (c)
Optimization test for 4 quadrupoles: GP (red) vs GP
with correlations (yellow). Each scan was performed
twice with identical starting conditions, shown with

different dashing. Each step takes approximately 3 to 4
seconds. (d) Simulations using a beam matrix model for

the conditions of c. 100 individual scans for each
method, with means shown by thick lines, are consistent

with measurements.

consistency of these results with simulations based on
correlations from the beam transport model as shown in
Figure 4d. It is interesting to note that the Bayesian
optimizer maximized the FEL with a similar number of
steps for the 12 quadrupole case (Fig. 2a), seemingly
in contradiction to Figure 3d. The similarity is due to
the fact that to leading order (assuming a monoenergetic
beam and linear optics), only four quadrupole magnets
are needed to match the four Twiss parameters into the
undulator line. However, optimizing more quadrupoles
further increases the FEL pulse energy by reducing chro-
matic effects which increase the electron beam emittance
and suppress FEL gain. While four quadrupoles can re-
cover a significant fraction of peak performance, in prac-
tice operators typically cycle through subsets of all of the
controllable quadrupoles. As the number of control pa-
rameters increases, the GP with correlations is expected
to provide an exponentially growing benefit over the stan-
dard GP.

In this Letter, we showed that online Bayesian op-
timization with length scales estimated from archived
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historical data can tune the LCLS FEL pulse energy
more efficiently than the current standard, Nelder-Mead
simplex algorithm. Moreover, we showed that adding
physics-informed correlations, obtained from beam op-
tics models, further improves tuning efficiency. This lat-
ter effect was demonstrated with four control parameters,
and the improvement is expected to grow dramatically
as the number of dimensions increases. The flexibility of
the GP enables training from archived data, simulations,
and physical models, and incorporating all this informa-
tion into the model allows it to improve in efficiency and
adapt to new tasks—all without the need for specialized
hardware such as graphics processing units (GPUs) or
high performance computing clusters.

We expect Bayesian optimization will become a stan-
dard tuning method for LCLS (and later for LCLS-II)
when operations resume, improving efficiency and op-
erational ability at SLAC as well as other accelerators
worldwide. Whereas the present study focused on the
most time-consuming task of tuning quadrupoles, we
have plans for additional applications to other accelera-
tor and beamline tasks, e.g. controlling FEL bandwidth,
optimizing undulator field strengths [31], controlling elec-
tron beam collimation and peak current, FEL focusing
and alignment, etc. More expressive GP models, such as
deep kernel learning [32–34] or deep GPs [35], may help
represent more complicated relationships between vari-
ables and extract additional value from historical data.
Furthermore, adding ‘safety’ constraints to the acquisi-
tion function can guide exploration while ensuring opera-
tional requirements are met (for instance, avoiding tran-
sient drops in FEL pulse energy or keeping losses low)
[36].

In our study, we exploited the physics of strong fo-
cusing to learn correlations between parameters while
empirically learning relevant length scales. This was
necessary since simulation codes that model the FEL
process in the postsaturation regime are computation-
ally expensive, limiting their usefulness in online tuning.
However in other systems, simulation alone may suffice
to calculate length scales and correlations [37]. Look-
ing forward, these codes may be rewritten in a frame-
work that supports automatic differentiation [38] to sim-
plify and accelerate Hessian calculations. Alternatively,
it may be possible to replace some simulation codes en-
tirely with fast-to-evaluate surrogate models [39] which
enable quick approximations of the system’s covariance.
Physics abounds with well verified mathematical models,
and incorporating additional physics knowledge into the
model–either explicitly in the formulation of the kernel
function as shown here or via additional training with
simulation–can have a significant effect on optimization
efficiency.
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