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    An elastic cloak is a coating material that can be applied to an arbitrary inclusion to make it 
indistinguishable from the background medium. Cloaking against elastic disturbances, in 
particular, has been demonstrated using several designs and gauges. None, however, tolerate the 
coexistence of normal and shear stresses due to a shortage of physical realization of 
transformation-invariant elastic materials. Here, we overcome this limitation to design and 
fabricate a new class of polar materials with a distribution of body torque that exhibits asymmetric 
stresses. A static cloak for full two-dimensional elasticity is thus constructed based on the 
transformation method. The proposed cloak is made of a functionally graded multi-layered lattice 
embedded in an isotropic continuum background. While one layer is tailored to produce a target 
elastic behavior, the other layers impose a set of kinematic constraints equivalent to a distribution 
of body torque that breaks the stress symmetry. Experimental testing under static compressive and 
shear loads demonstrate encouraging cloaking performance in good agreement with our theoretical 
prediction. The work sets a precedent in the field of transformation elasticity and should find 
applications in mechanical stress shielding and stealth technologies. 

The artificially structured materials, known as 
metamaterials, have significantly improved our ability to 
steer waves and channel energy in different areas of physics 
[1-4]. In particular, they brought the invisibility cloaks, 
featured in several pop cultural landmarks, to reality. 
Briefly, a cloak is a coating material that makes an object 
indistinguishable from its surroundings or undetectable by 
external field measurements of a specific kind [5-6]; To 
name a few, invisibility cloaks for light [7,8], sound [9], 
heat [10] and so on [11-15]. In the years following their 
theorization, a number of experimental demonstrations of 
cloaking have been reported including cloaking against 
electromagnetic waves at microwave and optical 
frequencies [16], acoustic waves [17-20], surface waves in 
water [21], electric [22-24] and heat currents [25, 26], as 
well as flexural waves in thin elastic membranes and plates 
[27, 28]. Cloaking is achieved with transformations that 
deform a region in such a way that the mapping is one-to-
one everywhere except at a single point, which is mapped 
into the cloak inner boundary. A key step in a cloak’s 
design is to apply a suitable warping transformation to the 
background medium and to accordingly rewrite its 
governing equations in a manner that reveals what 
constitutive materials are needed. The constitutive 
parameters of the cloaking material in the physical domain 
can then be defined by a spatial transformation and gauge 
matrices. Often, these materials are anisotropic when the 
background medium is isotropic. At first sight, this should 

mean that cloaking in solids for full elasticity [28-30] is 
more accessible than in fluids for acoustics [32-34] since 
anisotropic solids are potentially easier to fabricate than 
“anisotropic fluids”. Nonetheless, a closer look reveals that 
elastic cloaks, in general, further require their materials to 
be polar, i.e., to exhibit asymmetric stresses [35-40]. 
Polarity turns out to be necessary if shear and hydrostatic 
stresses are coupled as is typically the case in elasticity [37]. 
The lack of subwavelength microstructures, whose unit cell 
size is much smaller than operating wavelength, producing 
an effective polar elastic behavior has blocked the progress 
in the area of cloaking in solids for decades. Here, we 
propose a new way to fabricate and test the first of these 
structures for cloaking applications in two dimensional 
elasticity. 

It has long been thought that the Cosserats’ micropolar 
solids are suitable for cloaking given that they naturally 
feature asymmetric stresses [35]. This common wisdom is 
misleading, however, since what truly distinguishes the 
Cosserat theory from the standard one by Cauchy, 
kinetically and kinematically, is the presence of couple 
stresses on one hand and of microrotations on the other 
hand instead of the nature of the Cauchy stress tensor. This 
observation has led us, within the standard theory, to revisit 
the principle responsible for the symmetry of stresses, 
namely the local balance of angular momentum. It then 
becomes clear that achieving cloaking in solids by breaking 
the stress symmetry relies on finding the structures where 
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the balance of angular momentum is maintained differently. 
In what follows, we physically realize that by introducing 
the distribution of large body torques in the form of 
constraints which limit the local rotations [37]. We propose 
a design of a metamaterial with several layers, one to guide 
stresses, and the others to impose the constraints. Tests 
performed under static compression and shear demonstrate 
satisfactory cloaking performance of a semi-circular void or 
inclusion. We hope that the present contribution will fill the 
current gap which separates the transformation elasticity, in 
both static and dynamic regimes, from the already mature 
fields of transformation acoustics and optics thus enabling 
similar capabilities in the control and steering of general 
stress fields. 

 

 FIG. 1. Schematic representation of the transformation method: ષ 
is a fictitious reference medium and ࣓ is the physical medium; 
transformation ࣘ maps a point of the reference into a circular area 
of radius ݎ hosting the cloaked object while leaving unchanged the 
background beyond a distance ܴ from the center; the remaining 
annulus of thickness ܴ െ   .hosts the cloak ݎ
 
        Consider the two media ષ and ૑ of Fig. 1: the former 
is a fictitious reference medium and the latter is the physical 
medium. While they match in shape and composition over 
the background ࡮ , they differ within a disk of radius ܴ 
corresponding to a cloaked area, which is composed of a 
cloak of thickness ܴ െ  and of a cloaked circular object of ݎ
radius ݎ . Cloaking is successful when the respective 
displacement fields ࢁ and ࢛ of ષ and ࣓ are equal over the 
background ܤ  regardless of the applied loading or of the 
composition of the cloaked object. To derive the elastic 
properties of the cloak, we ensure that ષ and ࣓ have elastic 
energy densities ࣦሺસࢁሻ ൌ ௜௝௞௟ܥ ௜ܷ,௝ܷ௞,௟/2  and ℓሺસ࢛ሻ ൌܿ௜௝௞௟ݑ௜,௝ݑ௞,௟/2  that are identical up to the change of 
variables ࢁሺࢄሻ ൌ ሻ࢞ሺ࢛  for ࢞ ൌ ࣘሺࢄሻ  where ࣘ  maps ષ  to ࣓ . That is ℓሺસ࢛ሻ ൌ ࣦሺસࡲ࢛ሻ/ܬ  or in terms of elasticity 
tensors: ܿ௜௝௞௟ ൌ ࡲ ,௜௠௞௡ܥ௟௡ܨ௝௠ܨଵିܬ ൌ સࣘ, and ܬ ൌ  .[36] |ࡲ|
In what follows, the background ࡮  is assumed to be 
homogeneous and isotropic; the cloaked object is a void; 
and the cloaking transformation is radially symmetric: ࢞ ൌ ௙ሺ௥ሻԡࢄԡ ሻݎwith ݂ሺ ࢄ ൌ ሺԡ࢞ԡ െ  ݎ ԡ, where the radius࢞ሻ/ԡݎ
is measured from the center of the cloaked area. 
 

Therefore, cloaking an object in a background ࡮  of 
elasticity tensor ࡯ requires materials whose elasticity tensor 
is ࢉ; the problem is that no such materials are known. As a 
matter of fact, standard elasticity tensors satisfy three 
fundamental properties: (i) they are positive definite, 
namely if ࡱ is non-skew then ܥ௜௝௞௟ܧ௜௝ܧ௞௟ ൐ 0; (ii) they have 
the major symmetry ܥ௜௝௞௟ ൌ ௞௟௜௝ܥ  and (iii) the minor 
symmetry ܥ௜௝௞௟ ൌ ௜௝௟௞ܥ . By analyzing the constitutive 
behavior of the transformed/coating material in the Brun–
Guenneau–Movchan (BGM) gauge [1], we found that ࢉ 
only satisfies condition (ii) of major symmetry [37, 38]. We 
come to conclude that cloaking materials, were they to exist, 
must accommodate a compliant mechanism, i.e., a zero-
energy deformation mode or “zero mode”. In the present 
case, the zero mode is ࡱ௭௠ ൌ ݂ሺݎሻࢋଵ ٔ ଶࢋ െ ଶࢋ  ,ଵ(detailed derivation in Appendix B). As for condition (iii)ࢋٔ
it is a consequence of Cauchy’s second law of motion 
stating that the skew part of the stress tensor is equal to the 
externally applied body torque: ݐ ൌ ߳ଷ௝௞ߪ௝௞ ൌ ଵଶߪ െ ଶଵߪ . 
Typically, body torque is zero, the stress tensor is 
symmetric and the elasticity tensor has minor symmetry. 
Negating the latter, we deduce that cloaking materials are 
necessarily a polar material, a material that elastically 
resists rotation, and must be subject to an externally applied 
body torque ݐ ൌ ሾቀଵ௙ߤ െ 1ቁ ଵଶܧ െ ሺ݂ െ 1ሻܧଶଵሿ  with ܧ௜௝ ൌ ௜ܷ,௝ [37,38]. 

 

 
FIG. 2. The design and fabrication of the polar-mechanical perfect 
cloak. (a) The cloak consists of 4 different layers, in the z-axis 
view, from top to bottom, which is arranged as: layer 1-cloaking 
lattice; layer 2-upper rail; layer 3-connector; and layer 4-bottom 
rail. The bottom rail layer is fixed in a rigid plate as a ground 
condition.The size cloaking region and cloaking lattice are 95=ݎ 
mm and ܴ ൌ 200 mm respectively. Any object can be placed 
inside of the hollow interior and thereby becomes ‘unfilmable’. 
For any given pulling direction, the cylindrical core-shell 
geometry exhibits a symmetry plane normal to the pushing 
direction and cutting through the middle of the cylinder. Thus, it is 
sufficient to study the half-cylinder geometry. (b) The top view of 
the assembled cloak. The layer 1 (cloaking lattice) has been 
assembled with layer 2, layer 3 and layer 4. (c) The bottom view 
reveals the details of the polar-mechanical perfect cloak, the blue 
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lattice is layer 1, and the white part is layer 2. (d) Illustration of 
zero-mode of the unit cell of cloaking layer.   
 
In this study, we design and fabricate a new class of 
cloaking (polar) materials based on the transformation 
method. The cloaking material is composed of a 
functionally graded four-layered lattice embedded in an 
isotropic continuum background as shown in Figs. 2(a)-(c). 
A mechanism to make interconnection among the four 
layers is proposed: layer 1 (cloaking layer) works as the 
lattice guiding the stresses; layer 2 (upper rail layer) is the 
first set of rails whereas, layer 4 (bottom rail layer) is the 
second set of rails bound to a relatively rigid material as an 
effective ground; layer 3 (connector layer) connects layer 2 
and layer 4 and ensures the transmission of torques between 
them as shown in Fig. 2(a). In our design, each lattice site is 
free to move by sliding over an assembly of two orthogonal 
rails. By grounding the rails, the sites’ rotations are 
impeded. In other words, the grounded rails act as a 
torsional spring: they apply a torque proportional to the 
site’s angle of rotation. (Detailed in Appendix A).  As a 
result, the distributed external torques ݐ are properly applied 
to break stress symmetry. Given that, the lattice material 
shown in Figs. 2(b) and (c) exhibit an effective elasticity 
tensor of the same form as ࢉ . At each location ݔ , the 
thickness of the bars and the aspect ratio of the unit cell 
must be adjusted to fit exactly the targeted tensor ࢉ; this is 
confirmed for each unit cell through a numerical 
homogenization procedure. Meanwhile, the thickness of the 
hinges is kept to a minimum to approximately reproduce 
the behavior of an ideal pin transmitting zero bending 
moment. Therefore, the zero mode of the lattice shown in 
Figure 2 (d) can be easily obtained by adjusting the 
geometrical relations among the bars as tension-
compression elements (Detailed in Appendix B).   
 
The layers were 3D printed and manually assembled; the 
material properties are listed in Table 1 [41,42]. It is 
noteworthy that the Poisson’s ratio of the background 
medium is 0.33; in this particular case, the elastic moduli of 
the rails, connectors, and ground become irrelevant as long 
as they are significantly higher than those of the 
background. For other Poisson’s ratios, these moduli 
become important design parameters. To validate our 
design strategy, numerical simulations of a void cloaked in 
a two-dimensional plate under either pressure or shear 
loading are conducted by using a fictitious polar continuum 
and then by using the proposed lattice-based medium; the 
comparison showed very good agreement (Details in 
Appendix C). In the simulation, we also demonstrate the 
displacement fields in the proposed lattice structures with 
and without body torque and the excellent elastic cloaking 
performance from the polar material. 
Table.1 Material properties of the designed cloaking 

 Young’s modulus 
(GPa) 

Density(kg/m3) Poisson’s 
ratio 

Layer 1 1.50 1170 0.33 
 

Layer 
(2~4) 

 

2.50 1180 0.33 

Host 
medium 

1.25 1270 0.33 

 
FIG. 3. (a) The experimental setup of both tension and shear static 
test of the elastic cloak. The sample consists of lattice cloak, 
background material, void, and clamp. The tension and shear 
loading are supplied by the MTS system. The displacement in 
dotted red line due to the strain is measured by DANTEC 
dynamics system (The width of the dotted red line is from -100 
mm to 100 mm in the x-axis and the distance from the measured 
line to the bottom of the plate is 210mm in the y-axis); (b) 
Measured displacement fields with and without the cloaking 
device under a static pressure field applied to the top boundary and 
fixed boundary conditions from below: (i) without void (black 
squares), (ii) with void (red dots), (iii) with fabricated cloak (blue 
triangles). (c) Measured displacement fields with and without the 
cloaking device under a static shear field applied to the center of 
the plate and fixed boundary conditions on the other side: (i) 
without void (black squares), (ii) with void (red dots), (iii) with 
fabricated cloak (blue triangles). 
 
    To test its cloaking abilities, the proposed design is 
bonded to a background medium through its stress guiding 
layer, i.e., layer 1. In the quasi-static characterization 
experiments shown in Fig. 3(a), a holder holds the top side 
of the sample and pull onto the sample via a motorized 
translational stage [43]. The loading is applied by an MTS 
system both for tension and shear tests. The loading speed 
is 0.2 mm/min. To keep the deformations in the linear 
region, we apply a maximum global strain of about 1%. The 
holder at the bottom is fixed. In the tested sample, the void 
is a half circle with a radius of 95 mm and the radial 
thickness of the lattice cloak is 200 mm attached to the host 
medium plate with a length of 300 mm and a width of 600 
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mm. Meanwhile, the backside of layer 4 is fixed to an 
aluminum plate with length 400 mm and width 250 mm. 
We optically image the entire structure from the side, that is, 
in a plane perpendicular to the sample, and film the 
deformation using a DANTEC dynamics system while 
varying the loading. The obtained images are analyzed 
using an autocorrelation software tracking individual points 
(red dotted line in experimental setup) and delivering a 
spatial resolution beyond that of the individual camera 
pixels. This analysis provides us with the displacement 
directly from the experiment with a good signal-to-noise 
ratio. In this manner, the background medium is loaded and 
displacements are measured in two cases pertaining to 
tension and shear. The measurements are then compared to 
those obtained by loading two reference samples of the 
background medium, one with the void and one without it, 
both in the absence of the cloak. 

The measured displacements are depicted in Figs. 3(b) 
and (c) for the tension test and the shear test, respectively. 
Both plots show satisfactory cloaking performance. In 
particular, the lattice cloak succeeds in suppressing the 
localization expected and observed in the vicinity of the 
uncloaked void and restores the uniform displacement 
profile observed in the reference sample. In other words, 
the cloak reinforces the void without disturbing the fields in 
the background. Comparison of numerical (Appendix C) 
and experimental results is satisfactory as well: the minor 
differences observed could be attributed to the variability of 
the material properties produced by the 3D printing of both 
the lattice cloak and the host medium. 

 

 
FIG. 4. The total displacement field under a general mechanical 
loading (red arrow) at the top boundary of the test plate has been 
shown: (a) (i) without void, (ii) with void, (iii) with lattice cloak; 
(b) (i) without hard core, (ii) with hard core, (iii) with lattice cloak. 
The total displacement at dotted line (see iv, from -100 mm to 100 
mm in the x-axis, at 230 mm in the y-axis ) for plate with void and 
hard core have been shown in (c) and (d) respectively. 
 

Coated inclusions that do not disturb background fields 
obtained under loading at infinity are known as “neutral 
inclusions” [44,45]. Typically, however, the properties of 
the coating need to be changed in function of the loading 
and of the core’s properties. By contrast, the proposed cloak 
is universal. On one hand, the provided experimental results, 
along with the isotropy and linearity assumptions, show that 
the tested loading can be combined and rotated so as to 
guarantee similar cloaking performance for any static 
loading. As an example, a mechanical cloaking is simulated 
in the presence of a localized force applied at a 45º angle to 
the top boundary with satisfactory results (Fig. 4(a)). On the 
other hand, based on the transformation method, it is 
possible to predict similar cloaking performance for any 
core properties (void, elastic or rigid). Indeed, the void’s 
region is equivalent to a vanishingly small region, ideally a 
point, in the original domain. Therefore, filling the void 
with different material amounts to changing the elastic 
properties of a small region of the original medium; such a 
perturbation has negligible effects on any static equilibrium. 
Here too, numerical simulations validate this hypothesis: 
cloaking a hard core (aluminum) instead of a void, using 
the same lattice, produces the same fields in the background 
as those present in the absence of both inclusions (Fig 4.b-
d). 

 
In this study, we report on the design and fabrication of a 

static cloak shielding against combined pressure and shear 
stress fields using lattice-based polar materials that exhibit 
asymmetric stresses. We experimentally and numerically 
investigate the characteristics of the proposed cloak and 
find very good cloaking performance under both tension 
and shear loadings. The cloak is further universal in that it 
is able to hide an inclusion of arbitrary composition from 
external loadings of arbitrary orientation. Our results here, 
restricted to statics, will help make cloaking against stress 
waves and dynamic loadings experimentally accessible in 
the near future using similar polar materials-based 
architectures. 
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