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We study inclusive and diffractive dijet production in electron-proton and electron-nucleus col-
lisions within the Color Glass Condensate effective field theory. We compute dijet cross sections
differentially in both mean dijet transverse momentum P and recoil momentum ∆, as well as the
anisotropy in the relative angle between P and ∆. Our results cover a much larger kinematic range
than accessible in previous computations performed in the correlation limit approximation, where
it is assumed that |P | � |∆|. We validate this approximation in its range of applicability and
quantify its failure for |P | . |∆|. We also predict significant target-dependent deviations from the
correlation limit approximation for |P | > |∆| and |P | . Qs, which offers a straightforward test of
gluon saturation and access to multi-gluon distributions at a future electron ion collider.

Introduction. To gain a complete understanding of
the complex multi-parton structure of nuclei at small x,
measurements of a multitude of processes in high energy
e + p(A) collisions over a wide range of kinematics are
necessary. A future electron ion collider (EIC) [1–3] will
provide an ideal tool for such an endeavor, with dijet
production being one of the most important processes to
access the structure of gluon fields and their non-linear
dynamics inside protons and heavier nuclei.

While coherent diffractive dijet production allows to
access the target’s spatial geometry [4–8], inclusive and
incoherent diffractive dijet cross sections are sensitive to
multi-gluon correlations in the target [9, 10] (see also [11–
15]). In the back-to-back correlation limit approximation
(CLA), where the mean dijet momentum is much larger
than the recoil momentum, the inclusive dijet production
cross section can be expressed in terms of the Weizsäcker-
Williams transverse momentum dependent gluon distri-
butions (TMDs), allowing experimental access to these
fundamental quantities [9, 16–19]. We advocate going be-
yond this limit to allow for deeper insights into the multi-
gluon structure of the nucleus. Inclusive and diffractive
(incoherent) dijets are sensitive to the quadrupole and
dipole-dipole correlators of light-like Wilson lines, respec-
tively. These are among the fundamental objects describ-
ing the gluon structure at small x.

We present the first evaluation of inclusive and inco-
herent diffractive dijet cross sections and their azimuthal
anisotropies for general small-x kinematics in the Color
Glass Condensate (CGC) effective field theory (EFT)
[20, 21], at leading order in αs, resumming all terms
∼ αs ln 1/x. For inclusive dijets, our results explicitly
validate the CLA in the kinematic region |P | � |∆| and
extend our knowledge of dijet production to the region
|P | . |∆|, where deviations from the CLA turn out to be
large. We further show that corrections to the CLA also

become important when |P | . Qs, even when |P | > |∆|
holds. These corrections, enhanced by the saturation
scale Qs, probe genuine multi-gluon correlations [22, 23],
and are not encompassed by the resummed kinematic
twists of the improved TMD framework [24] (see also [25–
30] for forward dijets in dilute-dense hadronic collisions,
and experimental measurements from RHIC [31, 32]).

Calculations of the elliptic anisotropy employing multi-
gluon correlators deviate strongly from the CLA for
|P | . |∆|. In particular, for transverse polarization
the calculated elliptic modulation is qualitatively differ-
ent from that in the CLA, as a maximum appears both
as a function of |P | and |∆|.

For the first time within the CGC EFT (see also [33–
35]), we predict the incoherent diffractive cross section.
Our calculation predicts characteristic features of the
cross section’s elliptic anisotropy as a function of |P | and
|∆|, involving sign changes and minima, which should be
observable experimentally.

We compute the fraction of diffractive dijet events as a
function of the mean dijet momentum. It increases with
the mass number of the nucleus and decreases with Q2 at
a slower rate than expected in the small dipole expansion,
signaling gluon saturation [36].

Dijet production in high energy DIS. In the
dipole picture of high energy deeply inelastic scatter-
ing (DIS), the production of a forward qq̄ dijet can be
seen as the splitting of a virtual photon γ∗ into a quark-
antiquark dipole and its subsequent eikonal scattering off
the target’s color field. We work in a frame in which the
virtual photon and nucleon in the target have zero trans-
verse momenta [37]. The photon has virtuality Q2 and
four momentum qµ = (−Q2/2q−, q−,0). Neglecting its
mass, the nucleon has energy En and four momentum
Pµn = (

√
2En, 0,0). The center of mass energy of the

virtual photon-nucleon system is W . The transverse mo-
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menta of the outgoing quark and antiquark are p1 and
p2, their longitudinal momentum fractions are z1 and z2,
with zi = p−i /q

− = 2En|pi|e−yi/W 2, where p−i and yi
are the quark and antiquark longitudinal momenta and
rapidities in this frame, respectively.

Expressed using the momenta P = z2p1 − z1p2 and
∆ = p1 +p2, at leading order in αs, the cross sections for
dijet production of massless quarks for longitudinal (L)
and transverse (T ) photon polarization read [9, 16, 38]

dσγ
∗A→qq̄X
L

dy1dy2d2Pd2∆
=

8αeZ
2
fNcS⊥

(2π)6
δzz

3
1z

3
2Q

2

∫
b−b′
r,r′

e−iP ·(r−r
′)e−i∆·(b−b

′)Or,b;r′,b′K0(εf |r|)K0(εf |r′|) , (1)

dσγ
∗A→qq̄X
T

dy1dy2d2Pd2∆
=

2αeZ
2
fNcS⊥

(2π)6
δzz1z2(z2

1 + z2
2)ε2

f

∫
b−b′
r,r′

e−iP ·(r−r
′)e−i∆·(b−b

′)Or,b;r′,b′
r · r′

|r||r′|
K1(εf |r|)K1(εf |r′|) . (2)

Here, αe = e2/(4π) is the electromagnetic coupling, Nc =
3 is the number of colors, δz = δ(1 − z1 − z2), ε2

f =

z1z2Q
2, and

∫
x

=
∫

d2x. We use Z2
f = ( 2

3 )2 + (− 1
3 )2 +

(− 1
3 )2, corresponding to u, d and s quarks. Assuming

a homogeneous target, the cross section is proportional
to the effective transverse area of the target S⊥. The
multi-gluon correlations are encoded in O, defined as

O(4)
r,b;r′,b′ = 1− S(2)

x1,x2
− S(2)

x′2,x
′
1

+ S
(4)
x1,x2;x′2,x

′
1

(3)

for inclusive production, and

O(2,2)
r,b;r′,b′ = 1− S(2)

x1,x2
− S(2)

x′2,x
′
1

+ S
(2,2)
x1,x2;x′2,x

′
1

(4)

for total diffractive (color singlet) production. The x
coordinates are related to r and b via x1,2 = b ± z2,1r
and x′1,2 = b′ ± z2,1r

′. The dipole, dipole-dipole, and
quadrupole correlators of fundamental light-like Wilson
lines V are defined by [9, 39]

S(2)
x1,x2

=
1

Nc

〈
tr
(
V †x1

Vx2

)〉
, (5)

S
(2,2)
x1,x2;x′2,x

′
1

=
1

N2
c

〈
tr
(
V †x1

Vx2

)
tr
(
V †x′2

Vx′1

)〉
, (6)

S
(4)
x1,x2;x′2,x

′
1

=
1

Nc

〈
tr
(
V †x1

Vx2V
†
x′2
Vx′1

)〉
. (7)

where the 〈·〉 denote the average over static large x color
source configurations in the CGC EFT.

The correlators Or,b;r′,b′ contain both the elastic [40]
and inelastic parts. In this work we neglect the impact
parameter dependence of the target such that the elastic
cross section vanishes at non-zero ∆. This amounts to
the replacements O(4)

r,b;r′,b′ → S
(4)
r,b;r′,b′ − S

(2)
r,bS

(2)
r′,b′ , and

O(2,2)
r,b;r′,b′ → S

(2,2)
r,b;r′,b′−S

(2)
r,bS

(2)
r′,b′ , which restrict the cross

sections to the inelastic part.
The correlators above are evaluated at x = (Q2+|∆|2+

M2
qq̄)/W

2, which follows from kinematics and energy-
momentum conservation [9, 19], where the invariant mass
of the dijet is given by M2

qq̄ = |P |2/(z1z2).

To reduce the computational cost of our calculation, we
employ the nonlinear Gaussian approximation [9, 39, 41–
44], which allows one to express any n−point correlator
of light-like Wilson lines as a non-linear function of the
dipole correlator in Eq. (5), and was shown to approx-
imate the full quadrupole operator very well [41, 45],
even after JIMWLK small x evolution [46–52] for many
units in rapidity. Gaussian approximation expressions for
the dipole-dipole and quadrupole correlators are given in
[9, 39] and are summarized in [53]. For the dipole correla-
tor we use the solution of the running coupling Balitsky-
Kovchegov equation [54–56] with McLerran-Venugopalan
model initial conditions [57]. The parameters were ob-
tained by fitting HERA deep inelastic scattering data [58]
(see [59] and [53] for details).

Cross section and elliptic anisotropy. We present
results for the angle averaged cross section and elliptic
anisotropy for inclusive and diffractive dijet production
in the scattering of longitudinally and transversely po-
larized photons with virtuality Q2 = 10 GeV2 off nuclear
targets and center of mass energy of the photon-nucleon
system W = 90 GeV. These are defined as follows [60]:

dσγ
∗A→qq̄X
L/T

dΠ
=

∫
dθP
2π

dθ∆
2π

dσγ
∗A→qq̄X
L/T

dy1dy2d2Pd2∆
, (8)

and

vγ
∗A→qq̄X

2,L/T =

∫
dθP
2π

dθ∆
2π e

i2(θP−θ∆) dσγ
∗A→qq̄X
L/T

dy1dy2d2Pd2∆∫
dθP
2π

dθ∆
2π

dσγ
∗A→qq̄X
L/T

dy1dy2d2Pd2∆

. (9)

We study proton and gold targets and in the inclusive
case compare to the CLA. Additionally, we predict the
ratio of diffractive to inclusive events as a function of
dijet momentum for different targets and Q2. All results
are for fixed z1 = z2 = 0.5.

Inclusive dijets. In Fig. 1 we show the angular aver-
aged cross sections, comparing results using full multi-
particle correlators Eqs. (1) and (2) (solid lines) to the
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FIG. 1. Angle averaged inclusive dijet cross section for proton (upper) and gold (lower) targets. Solid lines: full multiparticle
correlator result. Dashed lines: CLA. Contour labels represent powers of 10. Panels on the left show a vertical section of the
contour plots at fixed |∆| = 1 GeV.

CLA [18, 19, 53] (dashed lines). The former are valid for
any value of ∆, while the latter are expected to be valid
only for |P | � |∆|. The expected agreement between
the CLA and the more general result at |P | � |∆| is
clearly confirmed in all cases. Deviations from the CLA
become large when extrapolated to the regime |∆| > |P |.

Importantly, we observe significant deviations from the
CLA at |∆| < |P | < 1.5 GeV for the gold target, and
much milder deviations for the proton. This difference
is explained by saturation effects: The cross sections be-
yond the CLA receive genuine saturation corrections of
order Q2

s/|P |2 and Q2
s/Q

2, in addition to kinematic cor-
rections of order |∆|2/|P |2 [22, 23]. This observation
demonstrates that inclusive dijet production in e+A col-
lisions at a future EIC can provide direct access to gluon
saturation.

In Fig. 2 we present the elliptic modulation of the cross
section in the angle between P and ∆. Again, the CLA
provides a good estimate in the region |P | � |∆|, and
deviations become large for |∆| & |P |. We predict a
minimum v2T ∼ −30% for proton targets in the range
|P | ∼ |∆| ∼ 1.8 GeV, and v2T ∼ −20% for gold for
|P | ∼ |∆| ∼ 2.2 GeV, unlike the CLA, which predicts

decreasing values of v2T as ∆ increases [53]. To probe
these, and the aforementioned saturation effects, exper-
iments should focus on the kinematics |P| ∼ |∆|. We
further confirm the large elliptic modulation for the lon-
gitudinally polarized photon, which was obtained previ-
ously in the CLA [18, 19, 53].

Diffractive dijets. We show results of diffractive dijet
cross sections and elliptic anisotropies for virtual photon
off gold scattering in Fig. 3. Although our results contain
only incoherent diffraction, these are the most dominant
at momentum transfer ∆ & 1/RA (∼ 0.2 GeV for gold),
such that the result is approximately equal to the total
diffractive cross section.

Comparing the inclusive (Fig. 1) and diffractive cross
sections (Fig. 3), we observe a strong suppression of
diffractive events and a different |P |-dependence for the
longitudinal and transverse cases. Theoretically, this can
be directly related to the properties of multi-gluon cor-
relators in the target. The only difference between the
inclusive and diffractive cross sections are the different
color structures of the correlators O. A small dipole ex-
pansion explains the effect of this difference: The first
non-vanishing term in the expansion occurs at linear
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FIG. 2. Elliptic anisotropy of inclusive dijet cross sections for proton (upper), and gold (lower). Solid lines: full multiparticle
correlator result. Dashed lines: CLA. Panels on the left show a vertical section of the contour plots at fixed |∆| = 1 GeV. We
emphasize the appearance of distinct minima in the v2T , which are not captured by the CLA.

order for the inclusive case and at quadratic order for
diffractive production, because diffractive events require
at least two gluons exchanged in the amplitude to ensure
color neutrality.

The elliptic modulation of the incoherent diffractive
cross section is shown in the middle panel of Fig. 3. For
both polarizations it exhibits a sign change as a function
of |P |, similar to that observed in coherent diffractive
dijet production [6, 7]. The transverse case also shows
a sign change in |∆| for |P | & 2 GeV. Importantly, the
elliptic modulation reaches large values (tens of percent)
in the studied kinematic range.

In the right panels of Fig. 3 we show the ratio of diffrac-
tive to inclusive events as a function of |P | for fixed
|∆| = 1.5 GeV. The fraction of diffractive events in-
creases with the target saturation scale Qs from proton
to gold, and decreases with increasing photon virtuality
Q2. An expansion in small dipoles predicts the fraction
of diffractive events to increase as Q2

s. We expect a fac-
tor of 2.6 increase in the considered kinematics after BK
evolution from proton to gold; however, we find a smaller
increase of 1.9 (2.3) for transversely (longitudinally) po-
larized photons at |P | ≈ 1 GeV and Q2 = 4 GeV2, with

a mild increase towards the expected value of 2.6 with
growing |P |. This behavior indicates effects of gluon sat-
uration, which are stronger in larger nuclei. We argue
that this ratio is a key measurement at a future EIC, al-
lowing to quantify gluon saturation (differentially in |P |
and Q2).

Conclusions. We computed inclusive and (incoher-
ent) diffractive dijet production cross sections in e+p and
e+A collisions at a future EIC within the CGC EFT.
These cross sections are sensitive probes of multi-gluon
correlations inside nuclear targets at small x and allow
to quantitatively probe gluon saturation experimentally.

Our approach is not restricted to |P | � |∆| and sig-
nificantly increases the theoretically accessible kinematic
range. We employed the non-linear Gaussian approxi-
mation, using dipole correlators obtained from rcBK fits
to HERA data. We validated the CLA in inclusive di-
jet production for most |P | � |∆|, but found significant
target dependent corrections for |P | . |∆| or |P | . Qs,
the latter being caused by gluon saturation effects. We
thus argue that the regime of moderate |P | ∼ Qs of the
target is particularly interesting when studying dijet pro-
duction at a future EIC. Differential measurements in P
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FIG. 3. Left: Diffractive angle averaged dijet cross sections (contour labels represent powers of 10). Center: Diffractive elliptic
anisotropy. Right: Ratio diffractive to inclusive cross section. Upper panels: Longitudinal. Lower panels: Transverse.

and ∆ within a range that includes Qs will allow to re-
veal the complex multi parton structure of nuclei and
uncover saturation.

We presented the first calculation of diffractive dijet
cross sections and their elliptic modulation within the
CGC EFT. We studied the nuclear modification of the
ratio between the differential inclusive and diffractive di-
jet cross sections by comparing gold to proton targets
at different values of Q2. The dependence of the ratio
between the cross sections on the target’s saturation mo-
mentum indicates that saturation effects are significant
in the studied kinematic regime.

In future work, we plan to include parton showers,
hadronization, and full jet reconstruction. Based on re-
sults in [19], we expect the v2 of the produced q-q̄ pair
presented here to be a good estimator of the observable
dijet v2. It will also be important to include next-to-
leading order (NLO) corrections, both in small-x evo-
lution equations: NLO BK [61–64] or NLO JIMWLK
[65, 66], and the NLO impact factor [67–71], and to con-
sider the effects of soft gluon radiation of the final state
jets that is not captured by the jet algorithm [8].

Detailed extraction of multi-gluon correlators in nuclei
and experimental confirmation of gluon saturation will
likely require complex global fits to a wide variety of
experimental data. We have demonstrated that inclusive
and diffractive dijet production are two of the most

important processes to consider.
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