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It is quite easy to control spin polarization and spin direction of a system via 

magnetic fields. However, there is no such a direct and efficient way to 

manipulate valley pseudospin degree of freedom. Here, we demonstrate 

experimentally that it is possible to realize valley polarization and valley 

inversion in graphene by using both strain-induced pseudomagnetic fields and 

real magnetic fields. The pseudomagnetic fields, which are quite different from 

real magnetic fields, pointing in opposite directions at the two distinct valleys of 

graphene. Therefore, coexistence of the pseudomagnetic fields and the real 

magnetic fields leads to imbalanced effective magnetic fields at two distinct 

valleys of graphene. This allows us to control the valley in graphene as 

convenient as the electron spin. In this work, we report consistent observation of 

valley polarization and inversion in strained graphene via pseudo-Landau levels, 



splitting of real Landau levels and valley splitting of confined states using 

scanning tunneling spectroscopy. Our results highlight a pathway to valleytronics 

in strained graphene-based platforms. 

   

Besides the spin degree of freedom, quasiparticles in graphene offer another degree 

of freedom, the valley quantum number, which can be described as a two-level system 

in analogy to the spin1-12. Previous scanning tunneling microscopy (STM) studies 

demonstrated that it is possible to lift the valley degeneracy in graphene by 

introducing symmetry-breaking potential from substrates13,14 or electron-electron 

interactions15,16. Then, one can measure the valley polarization through valley-split 

Landau levels (LLs) in the presence of real magnetic fields13-16. Very recently, it was 

demonstrated that we can detect the valley splitting in graphene at nanoscale and 

single-electron level by confining the valley-split LLs in STM-tip-induced quantum 

dots (QDs)17-19. Both valley polarization and inversion are observed in the confined 

states of the graphene QDs because of strains and broken-symmetry potential arising 

from the supporting boron nitride18. Theoretically, there is an alternative route, i.e., by 

introducing both pseudomagnetic field (PMF) and real magnetic field, to realize 

valley polarization in graphene in a more controllable way. The PMF, arising from 

modulation of electron hopping due to lattice deformation, can effectively create 

Landau quantization around low-energy Dirac cones of graphene20-24. Such a 

pseudo-Landau quantization has been explicitly demonstrated by STM measurements 

in which the pseudo-LLs are clearly observed25-35. However, the PMF, unlike the real 



magnetic field, does not violate the time-reversal symmetry of graphene and has 

opposite signs in the K+ and K- valleys20-24. Therefore, coexistence of the PMFs and 

the real magnetic fields leads to imbalanced effective magnetic fields at two distinct 

valleys36-44, which allows us to realize valley polarized Landau quantization in 

graphene29.  

In this Letter, we report STM measurements on a folded area of graphene and 

demonstrate that there is PMF gradient along the fold, including an inversion point 

where the pseudo-LLs disappear, i.e., the PMF becomes zero. In the presence of real 

magnetic fields, we observe valley-polarized LLs along the fold and the observed 

valley splitting inverted at the inversion point. By confining the LLs into 

STM-tip-induced QDs, we further detect the valley polarization and inversion of the 

confined states along the fold at single-electron level. Our experiment indicate that 

coupled PMF and real magnetic field can be used to switch valley polarization and 

inversion in graphene, which is extremely important in the valleytronics. 

In our experiment, we carry out measurements on graphene multilayers grown on 

Rh foils. By applying strong perpendicular magnetic fields, we can observe 

well-defined Landau quantization of massless Dirac fermions (Fig. 1), indicating that 

the topmost graphene sheet is electronically decoupled from the supporting substrate. 

Previously, we have demonstrated that mismatch of thermal expansion coefficients 

between the graphene and the metal substrates can introduce ripples in 

graphene26,27,29,45-47. In our experiment, nanoscale ripples can be easily observed in the 

topmost graphene sheet (see Fig. S1 for STM images48). Therefore, such a system 



provides an ideal platform to study novel electronic properties induced by the PMF in 

graphene monolayer.  

Figure 1(a) shows a representative STM image of a graphene nanoripple (see Fig. 

S2 for more atomic-resolved STM images48). In strained graphene, it is quite difficult 

to generate uniform PMFs20-24. Our experimental results, as shown in Fig. 1(b) and 

1(c), indicate that the PMFs along the ripple depend sensitively on the measured 

positions, even when the structure of the ripple only changes slightly (see Fig. S3 for 

detailed analysis of the strain along the ripple48). Figure 1(c) shows three 

representative scanning tunneling spectroscopy (STS) spectra acquired in zero 

magnetic field on different positions along the ripple. The tunneling peaks in the 

spectra are attributed to the strain-induced pseudo-LLs, which can be fitted well by 

the Landau quantization of massless Dirac fermions13-16,62-65 (see Fig. S448). 

According to the fitting, we can obtain the value of the PMFs in each position of the 

ripple. Figure 1(b) shows distribution of PMFs measured along the arrow in Fig. 1(a). 

Obviously, the PMFs are quite non-uniform and there is a very narrow transition 

region (less than 2 nm, within two dashed lines in Fig. 1(a)) where the PMF is almost 

zero.  

To further understand origin of the spatial distribution of the PMFs, we analyze 

lattice deformation of the strained graphene and carry out theoretical calculation. 

Through fast Fourier transform (FFT) analysis of the atomic-resolved STM images, 

we obtain the lattice deformation at different positions along the ripple (Fig. S348), 

which indicates that there are compressive strains along the zigzag direction both 



below and above the narrow transition region. Therefore, we can infer an in-plane 

deformation associated with an out-of-plane deformation of the graphene ripple. The 

strained graphene can be described by the tight-binding Hamiltonian22 : 

ܪ ൌ െݐ  ൬1 െ ߚܽ ݀൰ۃ,ۄ ݁  ೕ࢘ௗ· ܿற ܿ 

where ݐ ൌ 2.7 eV is the hopping energy and ܽ ൌ 0.142 nm is the bond length 

between nearest neighboring (NN) carbon atoms in pristine graphene. Due to the 

deformation, the bond length between NN sites ݅ and ݆ is changed by ݀, and ߚ ൌ െ ߲ ln ݐ ߲ ln ܽ⁄ ൎ 2. Here  is the vector potential induced by the external 

magnetic field. The exact strain field due to the deformation is hardly determined 

from the STM image with limited resolution. Instead, we propose a simple ansatz to 

approximate the strain field, which captures the leading order effects of the 

deformation (see Fig. S7-10 for details48). Our theoretical calculation by taking into 

account the spatial variation of strain shows that the direction of PMF is reversed 

along the ridge of the ripple (Fig. 2(a))66. Thus a narrow boundary with zero PMF 

exists naturally at the transition point. Therefore, our experimental results, 

complemented by theoretical calculations, demonstrate that the PMF has opposite 

signs in the two adjacent regions in the rippled structure shown in Fig. 1(a). 

The PMF exactly has the same value but has opposite signs in the two valleys (Fig. 

2(a)). By applying a real magnetic field B, the total effective magnetic field in the two 

valleys becomes different. In graphene monolayer, the energies of n ≠ 0 LLs depend 

on the magnetic fields and only the n = 0 LL is independent of the magnetic fields. 

Therefore, we can realize valley polarization for the n ≠ 0 LLs by using both the 



PMFs and real magnetic fields. Figure 1(d) shows three representative spectra 

recorded in different positions of the ripple in B = 11 T. We can observe well-defined 

Landau quantization of graphene monolayer. There is a pronounced asymmetry 

between the intensities of the LLs with positive and negative orbital index. This may 

partly arise from the decrease of quasiparticle lifetimes with the energy difference 

from the Fermi energy15 and partly arise from large electron-hole asymmetry in 

strained graphene29,46. Besides the pronounced asymmetry, the other obvious feature 

of the spectra is the clear splitting of n = -1, -2 and -3 LLs along with undetectable 

splitting of the zero LL recorded at the positions with finite PMFs, as shown in Fig. 

1(d) (see Figs. S5 and S6 for more spectra and discussion48). At the boundary with 

zero PMF, the splitting of all the LLs vanishes. These results demonstrate explicitly 

that the splitting of the LLs is induced by the combined effect of the PMFs and the 

real magnetic field.  

Our calculation indicates that the coexistence of PMFs and real magnetic fields 

leads to the emergence of valley polarization for the n ≠ 0 LLs, as shown in Fig. 2(b) 

and Fig. 2(c). In our experiment, the valley splittings of the n = -2, -3 LLs are not as 

pronounced as that of the n = -1 LL (Fig. 1(d)). Such a phenomenon is also well 

reproduced in our numerical result (Fig. 2(b) and 2(c)). Theoretically, the description 

of modulated electron hopping in strained graphene as an effective PMF is exactly 

valid only at the charge neutrality point. Apart from the charge neutrality point, the 

high pseudo-LLs are not well defined and the low-energy effective PMFs description 

fails. Therefore, we can obtain better valley splitting with decreasing LL index for the 



n ≠ 0 LLs. Because of the reverse of the PMF around the boundary in the studied 

ripple, the valley polarization changes signs from positive in the top region to 

negative in the bottom region (Fig. 1(d), Fig. 2(b) and Fig. 2(c)). Here positive 

(negative) valley polarization is defined as the energy of the LLs in the K+ valley is 

larger (smaller) than that in the K- valley. At the boundary, the valley polarization is 

zero, which is independent of the real magnetic fields. The above result demonstrates 

explicitly that the coupled PMFs and real magnetic field can be used to switch valley 

polarization and valley inversion in graphene.  

To further measure the spatially varying valley splitting in strained graphene, we 

use a recently developed method based on edge-free graphene quantum dots (GQDs), 

as schematically shown in Fig. 3(a). The edge-free GQD is generated by combining 

the electric field of the STM tip with a perpendicular magnetic field17-19. The probing 

STM tip, acting as a moveable top gate, bends the LLs in the region beneath the tip 

into the gaps between the LLs, which leads to edge-free confinement in graphene and 

generates confined orbital states in the GQDs (Fig. 3(a)). The orbital states of the 

GQDs can reflect the degeneracies of electrons in the studied graphene regions17-19. In 

pristine graphene, there are four-fold degeneracies (spin and valley) for electronic 

states. Therefore, every single orbital state of the GQD could be occupied by four 

electrons (See Fig. S11). Because of the small capacitance C of the GQD, a single 

excess electron on the GQD needs to overcome the electrostatic energy Ec = e2/C. As 

a consequence, we can observe a series of quadruplets of charging peaks in STS 

spectrum of pristine graphene (See Fig. S12). When the valley degeneracy is lifted, 



every single quadruplet of the confined orbital states will be divided into two doublets, 

as schematically shown in Fig. 3(b).  

The GQDs is movable with the STM tip, consequently, we can detect the valley 

splitting EV of graphene at any position where we chose. Figure 3(c) shows 

representative STS spectra recorded on the orange dot in Fig. 1(a) in different 

magnetic fields. Besides the well-defined LLs at low bias, we also observed charging 

peaks at high bias, indicating the emergence of the GQD beneath the STM tip. 

Obviously, the four charging peaks of a bound state divided into two doublets. In our 

experiment, the first four charging peaks arise from the confinement of the n = -1 LL. 

We define the energy spacing as ∆ܧଵଶ ଶଷܧ∆ ,  and ∆ܧଷସ , with ∆ܧଵଶ ൌ ܧ  ܧ ଶଷܧ∆ , ൌ ܧ  ܧ െ ܧ , and ∆ܧଷସ ൌ ܧ  ܧ  respectively (EZ = gμBB with the 

effective g-factor g ≈ 2 is the Zeeman splitting). Here the energy spacing of the 

confined states ΔE can be directly deduced from the voltage difference ΔVtip acquired 

from the charging peaks in the STS spectra by using ΔE = ηeΔVtip with η as the tip 

lever arm (See Figs. S13 and S14 for more analysis of the η)17-19. The valley splitting ∆ܧ  of a selected position can be directly acquired according to ∆ܧ ൌ ଶଷܧ∆ െ∆ܧଵଶ    measured in theܧ∆ . In Fig. 3(d), we summarize the valley splittingܧ2

orange dot of Fig. 1(a) as a function of B. In the meanwhile, we also plot the valley 

splitting of the same position deduced from the splitting of the n = -1 LL in Fig. 3(d). 

Obviously, the valley splitting measured by the two methods agrees well with each 

other, further demonstrating that it is facile to detect the valley splitting at nanoscale 

by using the GQD. Figure 3(e) shows the four charging peaks measured at different 



positions along the arrow in Fig. 1(a). It indicates that the valley splitting depends on 

the measured positions and reverses the direction around the boundary where the PMF 

is zero.  

To clearly show the spatially varying valley splitting, we measured 70×70 spectra 

in the studied area shown in Fig. 4(a) at a fixed B. Then we can obtain the values of ∆ܧଵଶ (∆ܧଷସ), ∆ܧଶଷ and |∆ܧ| as a function of positions in the studied area. Figures 

4(b)-4(d) show representative results obtained at B = 11 T and we obtain the valley 

splitting in the whole studied area (Fig. 4(d)). Similar results are obtained in other 

different B (see Fig. S15). Obviously, the valley splitting is observed over a wide 

range of the rippled region, implying that the strain field is rather homogeneous over 

regions more extended than the magnetic lengths of both the pseudomagnetic fields 

and real magnetic fields. Therefore, we can observe well defined Landau quantization, 

as shown in Fig. 1. Figure 4(e) summarizes the valley splitting as a function of 

positions measured along the arrow shown in Fig. 1(a) in different B. Obviously, there 

is a narrow boundary with zero valley splitting that separates two adjacent areas with 

opposite valley splitting. The maximum valley splitting changes from about 20 meV 

in the top region to -10 meV in the bottom region in the studied nanoripple. Here we 

should point out that the non-strained transition region separating two adjacent 

regions with the compressive strain is critical for the observation of the valley 

inversion in our experiment. In strained graphene with non-uniform compressive 

strain but without the non-strained region, we still can observe spatially varying 

valley splitting due to the non-uniform of the PMFs. However, the valley splitting 



cannot decrease to zero and reverse its direction (see Fig. S16-S18 for more 

experimental data and analysis). 

The above experiment indicates that the local strain of graphene plays a vital role in 

determining the valley polarization and inversion. Therefore, it is very important to 

control the local strain of graphene. Very recently, our experiment demonstrates that it 

is possible to control the local strain to generate programmable graphene nanobubbles 

by using functional atomic force microscopy (AFM)35. The size and shape of the 

graphene nanobubbles can be tuned by the stimulus bias of AFM tip. In this work, 

although it is still difficult to precisely control the local strain of graphene, we show 

the ability to change the local strain and, consequently, the corresponding valley 

polarization of graphene by using STM tip (Fig. S19-21). In the near future, it is 

possible to control strain patterns in graphene by using AFM or STM tip.      

In summary, we report consistent observation of valley polarization and inversion 

in strained graphene via pseudo-LLs, splitting of real LLs and valley splitting of 

confined states in tip induced QDs. Similar to the Zeeman splitting of electron spins, 

the valley degeneracy can be lifted by the imbalanced effective magnetic fields at the 

two distinct valleys of graphene. The resulted valley-polarized LL splitting up to 

several tens meV provides an ideal two-level subsystem formed purely by valley 

polarized quantum states. Our results provide a new avenue to manipulate the valley, 

which may have potential applications in valleytronics.   
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Figure 1. (a) A STM image (Vsample = 600 mV and I = 0.3 nA) of a nanoscale ripple. 

The black arrow and the dots in different colors mark the positions where we take the 

STS spectra. In the region between the two dashed curves, the measured PMF is zero 

and we cannot detect valley-polarized LLs. (b) Measured PMFs along the arrow in 

panel a. (c) Three tunnelling spectra measured at different positions in panel a. The 

indexes for the pseudo-Landau levels are marked. (d) Three tunnelling spectra 

measured at different positions in panel a in B = 11 T. The indexes for the LLs are 

marked. The subscribe +/- represents LLs of the K+/K- valley.  

 

 

 



 

Figure 2. (a) Calculated PMFs along the ridge of the ripple at the K+ and K- valleys. 

PMF is zero at the crossing point. (b) LDOS along the ridge of the ripple in B = 11 T. 

Splittings of the േ1 and േ2 LLs are clearly shown around the two ends of the 

ripple. (c) The LDOS at three different positions, corresponding to the three dashed 

lines (from up to down) in panel b.  

 

 

 

 

 

 

 



 
Figure 3. (a) Schematic of the tip-induced edge-free GQDs with the valley-polarized 

LL in external magnetic field. The STM tip leads to the band bending beneath the tip 

to realize the edge-free GQDs. (b) Top: Schematic valley-split confined state in the 

GQD. Bottom: Schematic for a sequence of doublet charging peaks in the dI/dV 

spectrum. (c) The STS spectra taken at the orange dot in Fig. 1(a) in different 

magnetic fields. The spectra are offset in Y axis for clarity. The numbers 1-4 sign the 

sequence of doublet charging peaks. (d) The valley splitting in different magnetic 

fields, yielding from the sequence of charging peaks (∆ܧ) and the splitting of the 

LL-1 (∆E-1), respectively. (e) 11 STS spectra taken along the arrow of Fig. 1(a) in B = 

11 T. Valley polarization and inversion are clearly observed. 

 



 

Figure 4. (a) A STM image (Vsample = 400 mV and I = 0.3 nA) of nanoscale graphene 

ripples. In the region between the two dashed curves, the measured PMF is zero and 

we cannot detect valley-polarized LLs. (b-d) Energy maps for the values of ∆ܧଵଶ, ∆ܧଶଷ and |∆ܧ| as a function of positions in the studied area in 11 T. (e) The valley 

splitting as a function of positions measured along the arrow shown in Fig. 1(a) in 

different magnetic fields. The insets schematically show the valley splitting and valley 

inversion. 

 

 


