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We show that a momentum-space meron spin texture for electromagnetic fields in free space can
be generated by controlling the interaction of light with a photonic crystal slab having non-zero
Berry curvature. These spin textures in momentum space have not been previously noted either in
electronic or photonic systems. Breaking the inversion symmetry of a honeycomb photonic crystal
gaps out the Dirac cones at the corners of Brillouin zone. The pseudo-spin textures of photonic
bands near the gaps exhibit a meron or antimeron. Unlike the electronic systems, the pseudo-spin
texture of the photonic modes manifests directly in the spin (polarization) texture of the leakage
radiation, as the Dirac points can be above the light line. Such a spin texture provides a direct
approach to visualize the local Berry curvature. Our work highlights the significant opportunities of
using photonic structures for the exploration of topological spin textures, with potential applications
towards topologically robust ways to manipulate polarizations and other modal characteristics of
light.

Spin textures, the spin configuration in either real or
momentum space, are of great interest in several sub-
fields of physics. Skyrmion-related objects, including
skyrmions, anti-skyrmions, merons, and anti-merons are
topologically nontrivial spin textures. These textures
have been extensively studied in various atomic and elec-
tronic systems such as Quantum Hall 2D electron gas,
Bose-Einstein condensates, nematic liquid crystals and
chiral magnets [1–7]. Antiskymions were discovered in
tetragonal Heusler materials [8], while merons and an-
timerons in real space were discovered in chiral magnet
thin film [9].

Since photons are massless spin-1 particles, skyrmion-
related objects can also emerge as spin textures of pho-
tons [10, 11]. Real space skyrmions have been observed
recently in surface plasmon polariton systems [11]. But
there has not been any report of anti-skyrmions, merons
and antimerons in optics. In this letter, using the
honeycomb photonic crystal slab structure as shown in
Fig. 1(a), we report meron and antimeron in momentum
space. The existence of such objects has not been previ-
ously noted either in electronic or photonic systems. The
observation of such spin textures may point to topologi-
cally robust ways to manipulate polarizations of light.

Skyrmion-related objects correspond to topologically
nontrivial configurations of a three-component unit vec-
tor field n = nxx̂ + ny ŷ + nz ẑ distributed over a disk in
a two-dimensional space with coordinates (x, y) [12, 13].
They are all characterized by the topological skyrmion
number

Q =
1

4π

∫
n · (∂xn× ∂yn) dxdy, (1)

The unit vector fields form a 2-sphere S2. For skyrmions

and antiskyrmions, one considers configurations where
n = ẑ at the center of the disk, and n = −ẑ at its edge.
(This is referred to as the “core-up” configuration.) Since
the fields n are the same at the edge, one can compact-
ify the edge to a single point to form a sphere. These
field configurations thus correspond to maps of S2 → S2,
which are characterized by the second homotopy group of
the sphere π2(S2) = Z, with an integer topological num-
ber Q characterizing topologically distinct ways that the
unit vectors wrap around the sphere. Q = +1 and −1
for skyrmions and antiskyrmions, respectively, for core-
up configurations as discussed above. For core-down con-
figurations, the signs are flipped, i.e. Q = −1 and +1 for
skyrmions and antiskyrmions, respectively.

For merons and antimerons, one considers configura-
tions where n = ẑ at the disk center, n⊥ẑ at its edge, and
nz ≥ 0 over the whole disk. These field configurations
correspond to maps of the disk to the upper hemisphere,
with the disk edge imaged to the equator. With the fol-
lowing map:

n = (nx, ny, nz) = (sin θ cosφ, sin θ sinφ, cos θ)→
m = (2nxnz, 2nynz, 2n

2
z − 1) = (sin 2θ cosφ, sin 2θ sinφ, cos 2θ)

(2)

which maps a hemisphere to a sphere with 0 ≤ θ ≤
π/2, 0 ≤ φ ≤ 2π, all the points on the equator of the
hemisphere are mapped to the south pole of the sphere.
Applying this map to the meron or anti-meron configu-
ration results in a field configuration with m = −ẑ on
the edge of the disk. One can then repeat the same com-
pactification process as the skyrmion case, and obtain an
integer Qm as the topological number for m. Since the
continuous map from the n field to the m field doubles
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the solid angle subtended, we have Qm = 2Q. There-
fore, merons and antimerons are characterized by half-
integer skyrmion numbers: Q = +1/2 and −1/2 for
core-up merons and antimerons, respectively; the signs
are flipped for core-down merons and antimerons [14].

In addition to the topological number Q, skyrmion-
related objects are further characterized by their polarity
p and vorticity w. p = 1 for n = ẑ and p = −1 for
n = −ẑ at the center [15]. The vorticity w indicates
the rotation direction of the in-plane components of n.
Along a counterclockwise loop around the center, for a
given w, the in-plane components rotate an angle of 2πw
counterclockwise. Skyrmions and merons have w = 1;
antiskyrmions and antimerons have w = −1.

Skyrmion-related objects can also emerge as spin tex-
tures of photons which are massless spin-1 particles
[10, 11]. Consider a polarization state as characterized by
a 2×2 density matrix ρ, with the basis being the right and
left circularly polarized states |RCP〉 and |LCP〉. The
Stokes parameters are defined as Si = Tr(ρσi) where
σ0 = I; σ1 = σx, σ2 = σy, σ3 = σz are the Pauli spin
matrices [16, 17]. For a pure polarization state |ψ〉,
S2
0 = S2

1 + S2
2 + S2

3 , thus its polarization is completely
characterized by a three-component unit vector, also de-
noted as n:

n = (nx, ny, nz) ≡ (S1/S0, S2/S0, S3/S0) (3)

All n’s form a unit 2-sphere known as Poincaré sphere.
The Poincaré sphere of massless spin-1 photon is identical
to the Bloch sphere of spin- 12 electron [18].

(a) (b) (c)

FIG. 1. (a) A photonic crystal slab with a honeycomb lattice
of circular air holes. The dielectric constant of the slab ε = 4.
The thickness of the slab is d = 0.25a, where a is the lattice
constant. The lower right shows the Brillouin zone. The
wavevector q = (qx, qy) measured from K and K′ are defined
individually so that qy axis points towards Γ. (b) The band
structure near K(K′). The two bands form a Dirac cone when
dA = dB = 0.22a (black dotted lines), while the degeneracy
is lifted when dA = 0.18a, dB = 0.26a (red). The blue dashed
lines plot the fit from the effective Hamiltonian. (c) Pseudo-
spin textures: core-up (down) meron for the lower (upper)
band near K, and core-down (up) meron for the lower (upper)
band near K′.

Here using photonic systems we show meron and anti-
meron spin textures in momentum space. We consider
a photonic crystal slab consisting of a honeycomb lattice
of circular air holes, where the holes at the two inequiv-
alent sublattice sites are of different sizes [Fig. 1(a)]. For

concreteness, the dielectric constant of the slab is ε = 4,
which approximates the dielectric constant of SiN at vis-
ible wavelengths.

The photonic band structure of the system exhibits
a Dirac cone at K and K ′ when dA = dB [black in
Fig. 1(b)]. Breaking the inversion symmetry (dA 6= dB)
gaps out the Dirac cone, resulting in two valleys at K and
K ′ [19, 20] [red in Fig. 1(b)]. The system thus exhibits
valley-contrasting physics similar to that in several two
dimensional semiconductors [21, 22].

Breaking inversion symmetry induces meron pseudo-
spin texture aound K and K ′. In the vicinity of K and
K ′, the system is described by an effective Hamiltonian
as obtained using the ~k · ~p method [23–25]:

Ĥ(qx, qy) = vD(−qy τ̂x + qxτ̂y)±∆τ̂z + ω0τ0, (4)

where the plus (minus) sign corresponds to K (K ′). In
this paper, q = (qx, qy) measures the difference of the
wavevector from K or K ′, with q̂y axis pointing towards
Γ, and q̂x = ẑ× q̂y, where ẑ is the unit vector perpendic-
ular to the slab (Fig. 1a). τ̂ = (τ̂x, τ̂y, τ̂z) are the Pauli
matrices of the pseudo-spin. τ (q) ≡ 〈Ψ(q)| τ̂ |Ψ(q)〉 =
(τx(q), τy(q), τz(q)) defines the pseudo-spin texture with
|Ψ(q)〉 being an eigenstate at q. The basis of τ̂ is chosen
such that |τx = ±1〉 correspond to the even/odd states
with respect to the qy axis, and |τz = ±1〉 correspond to
the clockwise/anticlockwise-rotating states with respect
to ẑ [20, 25]. Below, we refer to the states |τz = +1〉 and
|τz = −1〉 as the “up” and “down” pseudo-spin states,
respectively. vD is the group velocity. The term with ∆
breaks inversion symmetry and induces a bandgap of size
2|∆|.

Figure 1(b) plots the eigenvalues E(q) of the Hamilto-
nian in Eq. (4) (blue dashed lines) with fitting parameters
vD = 0.26c,∆ = −0.0056× 2πc/a, ω0 = 0.8646× 2πc/a,
where c is the speed of light in vacuum. E(q) agrees well
with the numerically determined photonic bands near K
and K ′ for the physical structure.

Figure 1(c) depicts the pseudo-spin textures as ob-
tained using Eq. (4). At K point (q = 0), the pseudo-
spin is up for the lower band and down for the upper
band. Far away from K point (|q| � |∆|/vD), the
pseudo-spins lie in the equatorial plane with vorticity
w = 1. The pseudo-spin textures around K are thus
identified as core-up (core-down) meron for the lower (up-
per) band. Moreover, the in-plane pseudo-spin compo-
nents (τx, τy) are locked at right angles with wavevector
(qx, qy). τ (q) around K ′ and K are related: suppose a
state in the lower band at q around K has a pseudo-spin
(τx, τy, τz), the corresponding state in the lower band at
the same q around K ′ has a pseudo-spin (τx, τy,−τz).
The same mapping applies for the upper band. There-
fore, the pseudo-spin textures around K ′ are core-down
(core-up) meron for the lower (upper) band. The meron
pseudo-spin textures manifest the localized Berry curva-
ture and the ±π Berry phase around K and K ′ [21].



3

We proceed to show that the meron pseudo-spin tex-
tures, and hence the local Berry curvature of the photonic
bands, can be directly observed as the meron/antimeron
spin texture of radiated photons. (Throughout the pa-
per, the word ”pseudo-spin” refers to the property of
the modes in the photonic crystal slab, and the word
”spin” refer to the polarization state of the outgoing ra-
diation in free space.) In our system, the valleys are
above the light line since ω > 4πc/3a. Consequently, un-
like electronic systems, here the excited photonic modes
will radiate out, and the leakage radiation carries in-
formation of the eigenmodes. Specifically, with respect
to Fig. 1(a), suppose light is incident from the z < 0
side with the propagation direction indicated by a unit
vector k̂. We define the S and P polarizations as hav-
ing their electric field along the directions ŝ = ẑ × k̂
and p̂ = ŝ × k̂, respectively, and the right/left circular
polarization (RCP/LCP) as having their electric fields

along the directions r̂ = p̂ + iŝ and l̂ = p̂ − iŝ, re-
spectively, where we adopt the convention of exp(−iωt).
The conventions of the Poincaré sphere are chosen so
that nz = ±1 correspond to RCP/LCP, and nx = ±1
correspond to P/S polarizations. Now we consider the
map between pseudo-spin τ of the eigenmode and spin
n of the radiated photons. The radiation process can
be described by a linear map F : |Ψi〉 7→ |Ψrad〉, where
|Ψi〉 are the internal states in the slab and |Ψrad〉 are
the corresponding leakage radiation. |Ψi〉 can be ex-
panded on the eigenbasis of |τx = ±1〉, which correpsonds
to even/odd states with respect to the qy axis. The
even/odd states radiate into P/S polarized states only,
i.e. |τx = 1〉 7→ |P〉, |τx = −1〉 7→ |S〉, where the relative
phase between |P〉 and |S〉 are fixed such that |τz = 1〉 7→
|RCP〉 , |τz = −1〉 7→ |LCP〉 at the transmission side; con-
sequently, |τz = 1〉 7→ |LCP〉 , |τz = −1〉 7→ |RCP〉 at the
reflection side. This map then induces a map between the
pseudo-spin of photons in the slab and the spin of radi-
ated photons as F∗ : 〈Ψi| τ̂ |Ψi〉 7→ 〈Ψrad| n̂ |Ψrad〉. For
transmission, (τx, τy, τz) 7→ (nx, ny, nz); for reflection,
(τx, τy, τz) 7→ (nx,−ny,−nz). As a result, the meron
pseudo-spin textures around K and K ′ can be directly
observed as meron spin textures at the transmission side
and antimeron spin textures at the reflection side.

In a typical optical experiment, the modes are excited
by an externally incident beam. In order to use the
measured polarization properties to infer the pseudo-spin
properties of the photonic modes, it is important that the
light being measured contains only the radiated photons
from the modes, without any interference from direct re-
flection/transmission of the incident bream. Therefore,
we propose the setup in Fig. 2(a), where we measure the
polarization of light in high-order diffraction channels.
Light with a specific frequency and polarization is inci-
dent on the sample at a specific angle to excite a desired
photonic mode around one Brillouin zone corner (K1).
Due to the periodicity of the lattice, the excited mode

(a) (b) (c)
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FIG. 2. (a) Diffraction scheme. Light with a specific fre-
quency and polarization is incident at a specific angle to ex-
cite desired photonic modes around one Brillouin zone corner
(K1). The excited mode radiates out to both 0th-order (K1)
and 1st-order (K2 and K3) diffraction channels on both the
transmission and reflection sides. Inset: first Brillouin zone
with corners K1,K2 and K3 indicated. (b-e) Calculated re-
flection spectra for incident light with fixed parallel wavevec-
tor K1. The shaded regions include the spectral range of the
photonic band gap at K. (b) and (c), 0th-order reflection for
right (b) and left (c) circularly polarized incident light. (d)
and (e), 1st-order reflection for right (d) and left (e) circularly
polarized incident light. The dashed lines show the fit with
Lorentzian lineshapes.

radiates out to both 0th-order (K1) and 1st-order (K2

and K3) channels on both the transmission and reflec-
tion sides. Figs. 2(b-e) show the calculated 0th-order/1st-
order reflection spectra for the RCP/LCP incident light
with fixed parallel wavevector K1. The 0th-order spectra
in Figs. 2(b) and 2(c) exhibit Fano resonance lineshapes,
superimposed upon a smoothly varying background cor-
responding to direct reflection [26]. This indicates strong
interference between the directly reflected incident light
and leakage radiation from the modes in the slab. In
contrast, the 1st-order spectra in Figs. 2(d) and 2(e) ex-
hibit resonances with Lorentzian lineshapes with negligi-
ble background, indicating a negligible contribution from
the direct reflection of the incident light. The wave am-
plitudes in these diffraction orders therefore arise entirely
from the leakage radiation from the photonic mode in the
slab. We emphasize that in this case, as long as the mode
is excited, the polarization of the leakage radiation is in-
dependent of the polarization of the incident light. In
general we can selectively excite either the upper or the
lower band with the use of different frequencies. Near
the K point, where the difference in frequencies between
the two bands is relatively small, we note that incident
light with RCP (LCP) selectively excites the lower (up-
per) state [20] at K point, as shown in Fig. 2(d) and 2(e).
In this case therefore we can in addition use different po-
larizations of the incident light to selectively excite the
upper and lower band.

We now numerically study the polarization states of
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(a)
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(d) (e)

FIG. 3. (a) Isofrequency contours of the lower band near
K point are studied frequency by frequency. (b-e) Stokes
parameters as functions of (qx, qy) at frequency ω = 0.855 ×
2πc/a which is in the lower band. (b) S0 is the intensity of
1st-order reflected light. (c-e) Normalized Stokes parameters
S1/S0, S2/S0 and S3/S0.

the photons in the 1st-order diffraction channel. The
directions, frequencies and polarization of the incident
light are chosen so that we probe the lower valley near K
point. At each frequency, we scan the incident parallel
wavevectors (kx, ky) = (K1x +qx,K1y +qy) around K1 =
(1/
√

3, 1/3) × 2π/a, and calculate the four Stokes pa-
rameters from the electric fields of the 1st-order reflected
light around K3 = (−1/

√
3, 1/3) × 2π/a [Fig. 3(a)].

Figs. 3(b-e) plot the simulation results at the frequency
ω = 0.855×2πc/a. Figure 3(b) shows the intensity distri-
bution S0(qx, qy) of 1st-order reflected light in momentum
space, where the bright peaks match the isofrequency
contour of the lower band. Figure 3(c-e) show normal-
ized Stokes parameters S1/S0(qx, qy), S2/S0(qx, qy) and
S3/S0(qx, qy), respectively. Since the Stoke parameters
are not well defined for S0 = 0, we only show results for
S0 > 0.04. The polarizations show significant variation in
the direction along the isofrequency contour, but far less
variation in the direction perpendicular to the contour.
This is consistent with the fact that the spin texture of
the leakage radiation manifests the pseudo-spin texture
of the underlying photonic modes in this setup.

In Fig. 4, we plot the spin textures of the leakage radi-
ation on the iso-frequency contours of the photonic band
structure. Near the K-valley, for the reflected light in
the 1st-order channel, the texture corresponds to a core-
down antimeron with skymion number Q = 1/2, polar-
ity p = −1 and vorticity w = −1 [Fig. 4(a)]. At the
K point, the spin points down (n = (0, 0,−1)), corre-
sponding to LCP. Away from the K-point the spin grad-
ually rotates to the equatorial plane, corresponding to
linearly-polarized light. Notice that the in-plane spin
components on the circle around the K-point have a
winding number of −1. At the K ′-valley, the spin tex-
ture of the reflected light corresponds to a core-up anti-

K Reflection(a) K’ Reflection(b)

K’Transmission(d)K Transmission(c)

FIG. 4. In the main figure of each panel, the arrow tail po-
sitions indicate the band dispersion ω(qx, qy). The arrow di-
rection indicates the spin n at that point. The inset plots the
in-plane spin component (S1/S0, S2/S0)(qx, qy). (a) K val-
ley, reflection. The spin texture is a core-down antimeron
(Skyrmion number Q = 1/2, polarity p = −1, vorticity
w = −1). (b) K′ valley, reflection. The spin texture is a
core-up antimeron (Q = −1/2, p = 1, w = −1). (c) K valley,
transmission. The spin texture is a core-up meron (Q = 1/2,
p = 1, w = 1). This spin texture is identically mapped
from the pseudo-spin texture near K [Fig. 1(c)]. (d) K′ val-
ley, transmission. The spin texture is a core-down meron
(Q = −1/2, p = −1, w = 1). This spin texture is identically
mapped from the pseudo-spin texture near K′ [Fig. 1(c)].

meron with Q = −1/2, p = 1, w = −1 [Fig. 4(b)]. This
texture has the same winding characteristics as the tex-
ture shown in Fig. 4(a), but with spin up at the core
of K ′. For the transmitted light in the 1st-order chan-
nel, the texture corresponds to a core-up meron at K
with Q = 1/2, p = 1, w = 1 [Fig. 4(c)], and a core-
down meron at K with Q = −1/2, p = −1, w = 1
[Fig. 4(d)]. Notice the in-plane spin components have
a winding number of +1. The relation of spin textures
between the transmitted and reflected lights can be ex-
plained by the mirror symmetry of the modes in the slab,
whereas the relation of the textures between the K and
K ′ valley can be explained by time-reversal symmetry
and the adopted coordinate system. The observed spin
texture of the leakage radiation corresponds well to the
pseudo-spin texture of the photonic modes in the slab
as described by Eq. (4). The analysis of the leakage ra-
diation provides a direct visualization of the intriguing
connection of spin, pseudo-spin, valley and band topol-
ogy in the photonic valleytronic systems. In particular,
our setup directly maps out the Berry curvature, which
has only been probed indirectly by wave packet trans-
port [27]. The spin texture for the leakage radiation as
we observe here can manifest in a single electromagnetic
pulse (and hence a single photon-wavefunction) [28].

In conclusion, we reveal the intrinsic meron pseudo-
spin texture in momentum space in a photonic crystal
slab, which can be directly observed as meron and an-
timeron spin texture by polarimetric study of high-order
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diffracted light from the system. Such spin texture in
momentum space has not been previously observed in ei-
ther electronic or photonic systems. Our work indicates
significant opportunities of using photonic structures to
explore topologically non-trivial spin textures. Our result
may also be important for arbitrary polarization gener-
ation [29–31]. For example, in this system, by chang-
ing the angle of incidence near the K point by a small
amount, a wide variety of different polarizations can be
generated.

This work is supported by the National Science Foun-
dation (CBET-1641069).
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