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An intrinsic feature of turbulent flows is an enhanced rate of mixing and kinetic energy dissipa-
tion due to the rapid generation of small-scale motions from large-scale excitation. The transfer of
kinetic energy from large to small scales is commonly attributed to the stretching of vorticity by the
strain-rate, but strain self-amplification also plays a role. Previous treatments of this connection are
phenomenological or inexact, or cannot distinguish the contribution of vorticity stretching from that
of strain self-amplification. In this letter, an exact relationship is derived which quantitatively estab-
lishes how intuitive multi-scale mechanisms such as vorticity stretching and strain self-amplification
together actuate the inter-scale transfer of energy in turbulence. Numerical evidence verifies this
result and uses it to demonstrate that the contribution of strain self-amplification to energy transfer
is higher than that of vorticity stretching, but not overwhelmingly so.

Fluid turbulence is an archetypal nonlinear multi-scale
phenomenon in classical physics. Encounters with turbu-
lent flows are ubiquitous in both the natural sciences and
engineering, due to the small viscosities of common fluids
like air and water relative to the typical sizes and veloci-
ties in many flows. Turbulent flows are generally charac-
terized by a continuous spectrum of energetic length and
time scales, and understanding how these scales dynam-
ically interact is a cardinal matter for turbulence model-
ing. The ability of turbulence to quickly produce small
scale motions from large scale excitation has traditionally
been characterized as a ‘cascade’ of energy, which has be-
come a linchpin for the study of turbulence physics [1–6].

The stretching of vorticity by the strain-rate has been
traditionally viewed as the basic mechanism by which
energy is transferred from large to small scales [3, 7, 8].
In this view, coherent regions of high rotation rate (or
vorticity) are preferentially subjected to extensional flow
(positive strain-rate) along the axis of rotation. The con-
servation of angular momentum requires an increase in
vorticity magnitude accompanied by a decrease in cross-
section. The result is positive work done by the strain-
rate on the vortex resulting in activity at smaller length
scales [9]. This concept of vortex stretching has been very
influential and many studies of inter-scale energy transfer
in turbulence have focused on it [10–14].

A statistical (or global) connection has been estab-
lished between the net amplfication of vorticity by the
strain-rate and the net energy transfer to small scales us-
ing the Karman-Howarth equations [15]. While the anal-
ogy to material line stretching [7] is not perfect because
vorticity does not have the same alignment behavior as
passive material lines [16–18], the vorticity preferentially
aligns with the strain-rate eigenvector having the second
largest eigenvalue, which tends to be extensional [19–22].

The statistical connection between vorticity stretch-
ing and the energy cascade is not unique, however. An
equally valid candidate mechanism is strain-rate self-
amplification, i.e., the steepening of compressive strain-

rates via nonlinear self-advection [23]. The positive av-
erage vorticity stretching cannot be disentangled from
positive average strain self-amplification in homogeneous,
or approximately locally homogeneous, flows [24]. Fur-
thermore, truncated series expansions suggest that strain
self-amplification contributes three times more than vor-
ticity stretching to inter-scale energy transfer [25, 26].

The notion of spectral blocking in two-dimensional tur-
bulence [27] due to the conservation of enstrophy high-
lights in a more precise qualitative way that vorticity
stretching (which vanishes in 2D) is necessary for sus-
tained energy transfer toward small scales. However,
strain self-amplification also vanishes in 2D, and the same
line of reasoning applied to the dissipation rate demon-
strates that strain self-amplification is simultaneously
necessary. Thus, this approach cannot distinguish be-
tween the contribution of vorticity stretching or strain
self-amplification to the energy ‘cascade’.

Explanations of vorticity stretching often invoke differ-
ent length scales of organized strain-rate and vorticity,
but (unfiltered) velocity gradients emphasize dynamics
at the smallest scales [28]. Spatially filtered velocity gra-
dients are more suited to describe behavior in the inertial
range where the energy ‘cascade’ is a dominant feature
[29]. Previous approaches using spatial filtering and/or
velocity increments [25, 26, 30] have connected inertial
range inter-scale energy transfer with vorticity stretching
and strain self-amplification, but have essentially done so
by truncating an infinite series, which leaves uncertainty
regarding the role of neglected higher-order terms.

In this Letter, an exact connection is demonstrated be-
tween inter-scale energy transfer, i.e., the ‘energy cas-
cade’, and spatio-temporally localized multi-scale inter-
actions of vorticity and strain-rate in a turbulent flow.
The derived relationship is verified using direct numerical
simulations, and then it is further leveraged to reveal the
true extent to which vorticity stretching and strain self-
amplification at various scales contribute to the transfer
of energy from large to small scales.
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The velocity field, u(x, t), of an incompressible turbu-
lent flow evolves according to,

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν∇2ui + fi, (1)

where ρ is the fluid mass density, ν is the kinematic vis-
cosity of the fluid, and f is any forcing applied to the
fluid. The pressure field, p(x, t), enforces the divergence-
free constraint, ∇ · u = 0. The velocity gradient ten-
sor, Aij = ∂ui/∂xj , describes the local flow topology in
terms of strain-rate, Sij = 1

2 (Aij +Aji) and rotation-
rate, Ωij = 1

2 (Aij −Aji), which can also be expressed as
the vorticity vector, ωi = εijkΩkj .

A turbulent flow with mean kinetic energy 〈K〉 =
1
2 〈uiui〉 and mean dissipation rate 〈ε〉 = 2ν〈SijSij〉 is
characterized by a wide range of length scales from an
integral length scale, L ∼ 〈K〉3/2〈ε〉−1, down to the Kol-
mogorov length scale, η = ν3/4〈ε〉−1/4. The dynamic

range of a turbulent flow increases as L/η ∼ Re3/2
λ , where

Reλ ∼ 〈K〉/
√
ν〈ε〉 is the Taylor-scale Reynolds number.

The features of a turbulent velocity field larger than a
given scale ` can be isolated using a low-pass filter [31],

u`i = G` ? ui, F{u`i} = F{G`}F{ui}, (2)

where F{·} denotes the Fourier transform and ? denotes
the convolution operator. The superscript, ` in this case,
denotes the filter width. The evolution equation for the
large-scale dynamics is obtained by filtering Eq. (1),

∂u`i
∂t

+ u`j
∂u`i
∂xj

= −1

ρ

∂p`

∂xi
+ ν∇2u`i + f

`

i −
∂σ`ij
∂xj

, (3)

where σ`ij = uiuj
`−u`iu`j represents an ‘effective stress’ on

the large-scale velocity caused by features smaller than
`. The kinetic energy at scales larger than ` is defined
as E`(x, t) = 1

2u
`
iu
`
i , and e`(x, t) = 1

2σ
`
ii represents the

kinetic energy at scales smaller than `. The large- and
small-scale energies evolve according to,

∂E`

∂t
+
∂T `i
∂xi

= u`if
`

i −Π` − E`, (4)

∂e`

∂t
+
∂t`i
∂xi

= q` + Π` − ε` (5)

where T `i and t`i describe spatial redistribution of large-
and small-scale energy, respectively (see [31] for more de-
tails). The molecular dissipation rate of large- and small-

scale energy is E` = 2νS
`

ijS
`

ij and ε` = 2ν(SijSij
` −

S
`

ijS
`

ij), respectively. The work done by forcing on the

small scales is q` = uifi − uif i. The term Π` = −σ`ijS
`

ij

appears in these two equations with opposite sign, rep-
resenting energy transfer between large and small scales
across scale `. If energy is injected by forcing at large
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Figure 1. Unfiltered (left) and filtered (right) velocity mag-
nitude on a slice through the 3D forced isotropic turbulence
simulation at Reλ = 400. A filter width of ` = 35η is used.

scales, then for a(n) (approximately) steady homoge-
neous flow with η � `� L, the energy balance becomes,

〈uifi〉 ≈ 〈u`if
`

i〉 ≈ 〈Π`〉 ≈ 〈ε`〉 ≈ 〈ε〉. (6)

For the present purposes, the validity of Eq. (6) defines
the inertial range of scales, where the exchange of energy
across ` by Π` is from large to small scales in the mean
in order to facilitate the dissipation of kinetic energy pre-
dominantly at small scales.

In the following, a Gaussian low-pass filter,

G`(r) = N e−|r|2/(2`2), F{G`}(k) = e−|k|
2`2/2, (7)

with N =
(
2π`2

)−3/2
, is used to derive a spatio-

temporally local relationship between filtered velocity
gradients and the transfer flux of energy across ` from
large to small scales. Figure 1 shows velocity magnitude
on a slice in a turbulent flow before and after the appli-
cation of a Gaussian filter. It may be readily seen from
Eqs. (2) and (7) that u` is the solution of the diffusion
equation,

∂u`i
∂(`2)

=
1

2
∇2u`i , u`=0

i = ui(x, t), (8)

where `2 is the time-like variable. Using the definition
of σij with Eq. (8), it is straightforward to show that
the effective sub-filter scale stress may be obtained as a
solution of a forced diffusion equation,

∂σ`ij
∂(`2)

=
1

2
∇2σ`ij +A

`

ikA
`

jk, σ`=0
ij = 0, (9)

where A
`

ij is the filtered velocity gradient tensor.
The solution to Eq. (9), with the Gaussian kernel as

the Green’s function, and can be written as,

σ`ij =

∫ `2

0

dθ

(
A
√
θ

ik A
√
θ

jk

√
`2−θ)

. (10)
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In this way, the sub-filter stress is the collective result of
contributions from velocity gradient fields filtered at all
scales

√
θ smaller than `. The filter at

√
`2 − θ projects

these contributions onto the larger scales.
The integrand of Eq. (10) bears some resemblance to

the nonlinear model [30, 32], σ`ij ≈ `2A
`

ikA
`

jk, but differs
from such previous expressions in that Eq. (10) is exact
rather than an approximate relation formed by truncat-
ing an infinite series. Furthermore, Eq. (10) straight-
forwardly decomposes into scale-local and scale-nonlocal
components,

σ`ij = `2A
`

ikA
`

jk

+

∫ `2

0

dθ

(
A
√
θ

ik A
√
θ

jk

φ

−A
√
θ

ik

φ

A
√
θ

jk

φ
)
, (11)

where φ =
√
`2 − θ. The first term on the right side of Eq.

(11) is ‘scale-local’ because it only involves quantities re-
solved at scale `. The second term involves the difference
of the filtered product and the product of filtered quan-
tities, representing the contributions of sub-filter scale
velocity gradients to the stress. This is considered ‘scale-
nonlocal’ because it contains velocity gradients at finer
scales than `.

Contracting Eq. (11) with the filtered strain-rate ten-

sor forms an expression for Π` = −σ`ijS
`

ij . Then, substi-
tuting the decomposition Aij = Sij + Ωij leads to

Π` = Π`
l,S + Π`

l,Ω + Π`
nl,S + Π`

nl,Ω + Π`
nl,c,

where

Π`
l,S = −`2S`ijS

`

jkS
`

ki, Π`
l,Ω = 1

4`
2ω`iS

`

ijω
`
j ,

Π`
nl,S = −

∫ `2

0

dθ

(
S
√
θ

ik S
√
θ

jk

φ

− S
√
θ

ik

φ

S
√
θ

jk

φ
)
S
`

ij ,

Π`
nl,Ω =

1

4

∫ `2

0

dθ

(
ω
√
θ

i ω
√
θ

j

φ

− ω
√
θ

i

φ

ω
√
θ

j

φ
)
S
`

ij ,

Π`
nl,c =

∫ `2

0

dθ

(
S
√
θ

ik Ω
√
θ

jk

φ

+ Ω
√
θ

ik S
√
θ

jk

φ
)
S
`

ij .

(12)

The first two terms in (12) represent inter-scale en-
ergy transfer by scale-local strain-self amplification (Πl,S)
and scale-local vorticity stretching (Πl,Ω), respectively.
By themselves, these two terms comprise the nonlinear
model of Ref. [32] and are given the subscript ‘l’ to de-
note ‘scale-local’, expressing the fact that these terms
involve only quantities filtered at scale `. The remaining
three terms have the subscript ‘nl’ for ‘nonlocal’, indi-
cating that these quantities involve smaller scales than
`. These ‘nonlocal’ terms include interactions of scales
only slightly smaller than `, so a more intricate discus-
sion of ‘cascade’ locality is included in the Supplemental
Material. The third and fourth terms represent the am-
plification by strain at scale ` of sub-filter strain (Πnl,S)
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Figure 2. The resolved dissipation rate and the net inter-scale
energy transfer as a function of scale using a Gaussian filter
on forced isotropic turbulence at Reλ = 400. The vertical
dashed gray lines indicate ` = 30η and ` = 70η = 0.15L.

and sub-filter vorticity (Πnl,Ω). The fifth term represents
energy transfer by the resolved strain-rate tensor acting
on the sub-filter correlation of strain-rate and vorticity.
This energy exchange mechanism is less intuitive and has
not received much attention, with the exception of [25].

The decomposition, (12), is exact and establishes a di-
rect relationship, at a particular location and time in a
flow, between the energy flux across scale ` and the multi-
scale interaction of vorticity and strain. This result en-
ables the systematic decomposition of turbulent inter-
scale energy transfer in terms of multi-scale interactions
such as vorticity stretching and strain self-amplification.

To leverage this result, direct numerical simulations
of steady homogeneous isotropic turbulence were per-
formed using Eq. (1) in a triply-periodic box with forcing
f specified such that the energy in the first two wavenum-
ber shells remains constant. Results for a simulation
with Reλ = 400 having 10243 points in each direction
are shown here. The range of active length scales is
L/η = 460. Figure 1 illustrates the numerical simula-
tion and filtering procedures.

The main features of energy transfer and dissipation
in the simulation are shown in Figure 2 as a function of
filter width, `. For increasing filter width above η, the
resolved dissipation rate, E`, decreases sharply and most
of the viscous energy dissipation is unresolved for `� η.
On the other hand, the sum of E` and Π` is equal to the
total dissipation rate provided ` � L, which indicates
the the forcing f is relatively inactive at these scales, see
Eqs. (4) and (5). Thus, for a range of scales, η � `� L,
the net energy transfer is equal to the total dissipation
rate and Eq. (6) is approximately satisfied.
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Figure 3. The fraction of net energy transfer, 〈Π`〉, accom-
plished by the five mechanism from Eq. (12). The horizontal
dashed lines are added manually to highlight the range of
scales for which the composition of inter-scale energy trans-
fer is approximately constant. The vertical dashed gray lines
indicate ` = 30η and ` = 70η = 0.15L.

Figure 3 shows the net contribution from each of the
five terms in Eq. (12) as a function of filter size. The
integrals are evaluated using the trapezoidal rule with a
discretization over logarithmically distributed points in
scale-space (θ) from 0.75η2 to `2 using roughly 15 points
per decade. First, it is important to point out that the
derived relation, Eq. (12), is verified by the black line
marked with star symbols indicating 〈Π`

total〉/〈Π`〉 = 1.
In other words, this confirms verifies that the ratio of the
right and left sides of Eq. (12) is exactly unity for all filter
widths. Next, consider separately each of the five terms
on the right side of Eq. (12). For ` . η, the nonlocal
terms are small and the two local terms dominate. The
Betchov relation, 〈Π`

l,S〉 = 3〈Π`
l,Ω〉, constrains the ratio of

the two local terms for any ` in homogeneous incompress-
ible flows [24, 26]. As a consequence, scale-local strain
self-amplification is responsible for three times more net
energy transfer than scale-local vorticity stretching at
any filter width.

For a range of scales approximately bounded by verti-
cal dashed gray lines in Figures 2 and 3, the proportional
contribution of each term in Eq. (12) remains fairly con-
stant in this range of filter widths. The results show that
roughly half of the net inter-scale energy transfer in the
inertial range is accounted for by the local terms Π`

l,S

and Π`
l,Ω. The other half is contributed by their nonlocal

counterparts, Π`
nl,S and Π`

nl,Ω. In contrast to the scale-
local terms, the scale-nonlocal terms indicate an even di-
vision between strain amplification and vorticity stretch-

ing on average. Due to the ‘pirouette’ effect [33], vortic-
ity is known to align more efficiently with larger-scale,
slower evolving strain-rates than with the strain-rate at
the same scale [34, 35]. With more efficient vorticity
stretching, the net inter-scale energy transfer by scale-
nonlocal interactions is more evenly balanced between
the two mechanisms.

To summarize, the fractional contributions of net inter-
scale energy transfer from each of the five mechanisms in
the inertial range can be approximately summarized as
〈Π`

l,S〉 : 〈Π`
l,Ω〉 : 〈Π`

nl,S〉 : 〈Π`
nl,Ω〉 : 〈Π`

nl,c〉 ≈ 3 : 1 : 2 :
2 : 0. Including scale-local and nonlocal terms together,
the ratio of contributions from strain self-amplification
and vorticity stretching is roughly 〈Π`

S〉 : 〈Π`
Ω〉 ≈ 5 : 3.

This result stands in contrast to both the traditional view
which focuses only on vorticity stretching, as well as more
recent views that strain self-amplification is the domi-
nant mechanism, including the view that over-emphasizes
that 〈Π`

l,S〉 : 〈Π`
l,Ω〉 = 3 : 1 due to the Betchov relation

[26]. The precise values found for these relative con-
tributions are reported in Figure 3 are not emphasized
because of the limited extent of inertial range provided
by the present simulation. Reynolds number effects are
further explored in the Supplemental Material, and fu-
ture work at higher Reynolds numbers can refine these
results. Dependence on filter shape is addressed in the
Supplemental Material, and it is expected that the main
conclusions will hold for other filter shapes [36].

In conclusion, an exact relationship between inter-scale
energy transfer and multi-scale vorticity-strain interac-
tions is introduced and verified. This development disen-
tangles the respective impacts of vorticity stretching and
strain self-amplification on the energy ‘cascade’. Analy-
sis of detailed simulations reveals that, while scale-local
strain self-amplification provides three times the energy
transfer as scale-local vorticity stretching, it is just as
important to consider multi-scale interactions. For scale-
nonlocal interactions, in fact, the net contribution by vor-
ticity stretching and strain self-amplification is roughly
equal. As a result, strain self-amplification is responsi-
ble for more net inter-scale energy transfer than vorticity
stretching, but not overwhelmingly so. Both processes
seem important in the rapid production of small-scale
motions in turbulence.

The present view of the inter-scale energy transfer will
facilitate a more detailed exploration of the energy cas-
cade in turbulence. For instance, the efficiency of the
cascade is known to be quite low [37], and the present re-
sults provide a framework for future exploration of how
the cascade is driven by multi-scale velocity gradient dy-
namics [33, 35]. In fact, the present work suggests that
it may be more advantageous to pursue shell models ex-
pressed in terms of velocity gradients [38, 39]. Also, the
results shown here have focused on the net energy trans-
fer, but this quantity fluctuates in space and time. Analy-
sis of fluctuations and negative transfer events, as well as
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investigations connecting the present work with spatially
coherent structures [40, 41], may also provide a deeper
mechanistic understanding of turbulent dynamics. The
approach outlined here can be extended to flows with ad-
ditional physics such as stratification, rotation, chemical
reactions, multiple phases, and active matter.

The insights from this approach provide guidance
for advancing models for large-eddy simulations, which
are designed to provide accurate results despite under-
resolution of turbulent flows on coarse numerical grids
[42, 43]. The stretching of sub-filter vorticity is an ap-
pealing basis for models [44–47], but the analysis here
reveals a path for improving on such an approach.

The author would like to acknowledge support from the
Advanced Simulation and Computing program of the US
Department of Energy’s National Nuclear Security Ad-
ministration via the PSAAP-II Center at Stanford, Grant
No. DE-NA0002373. The author thanks Theo Drivas, as
well as Adrian Lozano-Duran and Parviz Moin for fruitful
discussions on the topic. Additional thanks is due to one
of the anonymous referees for pointing out the relevance
of spectral blocking to this work.

∗ perryj@stanford.edu
[1] L. F. Richardson, Weather Prediction by Numerical Pro-

cess (Cambridge, 1922).
[2] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299

(1941).
[3] L. Onsager, L. Nuovo Cim. 6, 279 (1949).
[4] U. Frisch, Turbulence (Cambridge, 1995).
[5] G. Falkovich, J. Phys. A-Math. Theor. 42, 123001 (2009).
[6] L. Biferale, Annu. Rev. Fluid Mech. 35, 441 (2003).
[7] G. I. Taylor, P. R. Soc. London A 164, 15 (1938).
[8] D. I. Pullin and P. G. Saffman, Annu. Rev. Fluid Mech.

30, 31 (1998).
[9] H. Tennekes and J. L. Lumley, A First Course in Turbu-

lence (MIT Press, 1972).
[10] T. S. Lundgren, Phys. Fluids 25, 2193 (1982).
[11] J. Jimenez and A. A. Wray, J. Fluid Mech. 373, 255285

(1998).
[12] A. J. Chorin, Commun. Math. Phys. 114, 167 (1988).
[13] A. Lozano-Duran, M. Holzner, and J. Jimenez, J. Fluid

Mech. 803, 356394 (2016).
[14] N. A. K. Doan, N. Swaminathan, P. A. Davidson, and

M. Tanahashi, Phys. Rev. Fluids 3, 084601 (2018).
[15] T. de Karman and L. Howarth, P Roy. Soc. A-Math. Phy.

164, 192 (1938).
[16] M. Holzner, M. Guala, B. Luthi, A. Liberzon, N. Nikitin,

W. Kinzelbach, and A. Tsinober, Phys. Fluids 22,
061701 (2010).

[17] P. L. Johnson and C. Meneveau, Phys. Rev. E 93, 033118
(2016).

[18] P. L. Johnson, S. S. Hamilton, R. Burns, and C. Mene-
veau, Phys. Rev. Fluids 2, 014605 (2017).

[19] P. Vieillefosse, J. Phys.-Paris 43, 837 (1982).
[20] P. Vieillefosse, Physica A 125, 150 (1984).

[21] W. T. Ashurst, A. R. Kerstein, R. M. Kerr, and C. H.

Gibson, Phys. Fluids 30, 2343 (1987).
[22] B. J. Cantwell, Phys. Fluids 4, 782 (1992).
[23] A. Tsinober, An Informal Conceptual Introduction to

Turbulence (Springer, 2009).
[24] R. Betchov, J. Fluid Mech. 1, 497 (1956).
[25] G. L. Eyink, J. Fluid Mech. 549, 159 (2006).
[26] M. Carbone and A. D. Bragg, J. Fluid Mech. 883, R2

(2020).
[27] R. Fjortoft, Tellus 5, 225 (1953).
[28] C. Meneveau, Annu. Rev. Fluid Mech. 43, 219 (2011).
[29] M. Danish and C. Meneveau, Phys. Rev. Fluids 3, 044604

(2018).
[30] V. Borue and S. A. Orszag, J. Fluid Mech. 366, 1 (1998).
[31] M. Germano, J. Fluid Mech. 238 (1992).
[32] R. A. Clark, J. H. Ferziger, and W. C. Reynolds, J. Fluid

Mech. 91, 116 (1979).
[33] H. Xu, A. Pumir, and E. Bodenschatz, Nat. Phys. 7, 709

(2011).
[34] T. Leung, N. Swaminathan, and P. A. Davidson, J. Fluid

Mech. 710, 453481 (2012).
[35] D. Fiscaletti, G. E. Elsinga, A. Attili, F. Bisetti, and

O. R. H. Buxton, Phys. Rev. Fluids 1, 064405 (2016).
[36] See Supplemental Material [url] for more details including

Reynolds number and filter shape dependencies, which
includes Refs. [48–56].

[37] J. G. Ballouz and N. T. Ouellette, J. Fluid Mech. 835,
1048 (2018).

[38] L. Biferale, L. Chevillard, C. Meneveau, and F. Toschi,
Phys. Rev. Lett. 98, 214501 (2007).

[39] P. L. Johnson and C. Meneveau, Phys. Rev. Fluids 2,
072601(R) (2017).

[40] I. Bermejo-Moreno and D. I. Pullin, J. Fluid Mech. 603,
101135 (2008).

[41] S. Dong, Y. Huang, X. Yuan, and A. Lozano-Duran,
arXiv (2019).

[42] C. Meneveau and J. Katz, Annu. Rev. Fluid Mech. 32,
1 (2000).

[43] P. Sagaut, Large Eddy Simulation for Incompressible
Flows (Springer, 2006).

[44] D. I. Pullin and P. G. Saffman, Phys. Fluids 6, 1787
(1994).

[45] A. Misra and D. I. Pullin, Phys. Fluids 9, 2443 (1997).
[46] D. Chung and G. Matheou, J. Atmos. Sci. 71, 1863

(2014).
[47] M. H. Silvis, R. A. Remmerswaal, and R. Verstappen,

Phys. Fluids 29, 015105 (2017).
[48] M. Germano, Phys. Fluids 29, 1755 (1986).
[49] Vreman B, Geurts B, and Keurten H, J. Fluid Mech.

278, p351 (1994).
[50] J. L. Lumley, Phys. Fluids 4, 203 (1992).
[51] T. Aoyama, T. Ishihara, Y. Kaneda, M. Yokokawa,

K. Itakura, and A. Uno, J. Phys. Soc. Jpn. 74, 3202
(2005).

[52] G. L. Eyink, Physica D 207, 91 (2005).
[53] J. A. Domaradzki and D. Carati, Phys. Fluids 19, 085112

(2007).
[54] G. L. Eyink and H. Aluie, Phys. Fluids 21, 115107 (2009).
[55] J. I. Cardesa, A. Vela-Martin, S. Dong, and J. Jimenez,

J.nez, Phys. Fluids 27, 111702 (2015).
[56] G. L. Eyink, “Turbulence Theory III,” course

notes, Johns Hopkins University (2014),
http://www.ams.jhu.edu/ eyink/TurbulenceIII/notes.html.


