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A powerful perspective in understanding non-equilibrium quantum dynamics is through the time evolution

of its entanglement content. Yet apart from a few guiding principles for the entanglement entropy, to date,

much less is known about the refined characteristics of entanglement propagation. Here, we unveil signatures of

the entanglement evolving and information propagating out-of-equilibrium, from the view of the entanglement

Hamiltonian. We investigate quantum quench dynamics of prototypical Bose-Hubbard model using state-of-

the-art numerical technique combined with conformal field theory. Before reaching equilibrium, it is found that

a current operator emerges in the entanglement Hamiltonian, implying that entanglement spreading is carried by

particle flow. In the long-time limit the subsystem enters a steady phase, evidenced by the dynamic convergence

of the entanglement Hamiltonian to the expectation of a thermal ensemble. Importantly, the entanglement tem-

perature in steady state is spatially independent, which provides an intuitive trait of equilibrium. These findings

not only provide crucial information on how equilibrium statistical mechanics emerges in many-body dynamics,

but also add a tool to exploring quantum dynamics from the perspective of the entanglement Hamiltonian.

Introduction.— The power of classical statistical mechan-

ics is rooted in the ergodic hypothesis, but in closed quan-

tum many-body systems, how “memories” are forgotten in a

realistic time scale [1–4] — how steady states and thermal

behavior at later times emerge dynamically [5–7]— remains

an actively investigated topic [8–11] . Motivated by signifi-

cant progress in experimental techniques that have made the

dynamics of quantum systems accessible [12–22], a recent

surge of theoretical interest has focused on the problem of

non-equilibrium quantum dynamics. In many cases, particu-

larly in interacting systems, to directly access such dynamics

remains technically challenging due to the increasing amount

of correlations generated over time [23, 24].

From an entanglement point of view, these correlations are

a consequence of entangled quasiparticle pairs being con-

stantly generated and propagating into different parts of the

system [23–28]. The dynamics of these quasiparticles have

been shown to reflect the underlying nature of their hosting

systems, e.g., ballistic in thermalizing systems [25, 29–31]

versus logarithmic in localized systems [32–35]. In many

of these examples, propagation of entanglement also spreads

conserved quantities which can serve as information carriers

[23, 36–38]. An important aspect to understanding quantum

dynamics and the emergence of equilibration is therefore to

understand the dynamics of quantum entanglement [10], even

in systems without identifiable quasiparticle content [30, 39–

42]. In this context, entanglement dynamics is also connected

with information loss and scrambling [43–48].

In equilibrium condensed matter systems, entanglement-

based analysis has already proved to be a profitable tool as

a diagnostic of strong correlations, from the presence of topo-

logical order to the onset of quantum criticality [49]. In-

deed, the scaling of entanglement entropy characterizes the

quantum statistics of quasiparticles [50, 51], and entangle-

ment spectrum encompasses a direct relation between bulk

and edge physics [52], both of which highlight the wealth of

information encoded in entanglement. While entanglement

entropy and entanglement spectrum are important measures

of quantum information, the entanglement Hamiltonian (EH)

is a more fundamental object. The EH is a sum of the local

“energy” density H(x) weighted by a local inverse of entan-

glement temperature β(x): HE =
∫

dxβ(x)H(x). The re-

lationship between EH and the reduced density matrix of a

subsystem (A), ρA = e−HE , implies that ρA can be inter-

preted as a canonical ensemble with energy density H(x) in

local thermal equilibrium at temperature β−1(x) [53]. There-

fore, knowledge of the EH could offer an alternative picture

of how subsystem A behaves by appealing to our thermody-

namic intuition. However, precise knowledge about the EH

is rare, even for static systems [54, 55]. Recently, numeri-

cal efforts have attempted to obtain the EH in static interact-

ing systems using various methods [56–58], and have shed

some light on this technically challenging problem. As for

time-evolving systems, although results for non-interacting

cases have been obtained [59–63], the quantitative role of EH

in strongly-correlated systems remains unexplored, and it is

highly desirable to systematically study the time dependence

of EH.

In this work, we study the EH in the quench dynamics of the

Bose Hubbard model, a prototypical non-integrable system,

based on the time-dependent density-matrix renormalization

group (t-DMRG) approach [64, 65]. With the help of a re-

cently developed numerical scheme [58], we are able to track

the time dependence of the EH in real time. Our main findings

are that: 1) a current operator emerges in the EH before the

system reaches equilibrium, reflecting the propagation of en-

tanglement carried by particle flow; 2) in the long-time limit,

the EH becomes nearly stationary and demonstrates features

of equilibrium; 3) the steady state exhibits a spatially inde-

pendent entanglement temperature, signaling the subsystem
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becomes locally thermalized. These results are endorsed by

the conformal field theory (CFT). These findings imply that

the EH can be used to effectively investigate the emergence

of subsystem equilibrium under the unitary dynamics of the

full system, which sets up a valuable paradigm for exploring

entanglement dynamics out-of-equilibrium.

Preliminary.— We begin by discussing the salient features

of the EH dynamics after a quantum quench, in the framework

of 1+1D CFT. We consider a 1D chain with finite length L de-

fined on x ∈ [0, L], and the subsystem A under consideration

is chosen as [0, l]. At time t = 0, we start from an initial state

with short-range entanglement, which may be considered as

the ground state of a gapped Hamiltonian. At t > 0 we evolve

it with a CFT Hamiltonian HCFT =
∫

dxH(x). We consider

the “semi-infinite” condition (l ≪ L), where the other bound-

ary at x = L can be safely neglected when we focus on the

subsystem A = [0, l].
Based on conformal mappings, we obtained the exact form

of the EH (See supplementary materials for details [66]). Im-

portantly, we found that in the long-time limit, the EH of sub-

system A is the sum of H(x) weighted by a spatially depen-

dent finite temperature β−1(x), indicating that the reduced

density matrix ρA(t) takes the form of a thermal ensemble.

To be specific, in the long time limit t ≫ l, one obtains the

EH HE =
∫

dxβ(x)H(x), with the envelope function [66]

β(x) = 2β0 ·
sinh(π(l + x)/β0) sinh(π(l − x)/β0)

sinh(2πl/β0)
, (t ≫ l).

(1)

Here β0 characterizes the correlation length of the gapped

pre-quench state [27], and it also qualifies the effective “tem-

perature” of energy density of the system using pre-quench

state [66]. In addition, as notable byproducts, CFT also gives

time dependence of entanglement entropy to the leading order

[25, 26, 66]:

S(t) =

{

3c
πβ0

t, t < l
3c
πβ0

l, t > l
, (2)

where c is the central charge of the underlying CFT. That is,

the entanglement entropy grows linearly in time until it satu-

rates at a value satisfying the volume law [66].

Model and Method.— We now turn to a paradigmatic non-

integrable model, the one-dimensional Bose-Hubbard model,

which has been experimentally realized with ultracold gases

in deep optical lattices [67],

Ĥ = −J
∑

i

(b†ibi+1 + h.c.) +
U

2

∑

i

ni(ni − 1), (3)

where b†i (bi) is the boson creation (annihilation) operator and

nj = b†ibi is the on-site density operator. Throughout this

work, we consider a uniform Hamiltonian density, i.e. the

physical coupling J (set to J = 1) and interaction U are

spatially independent. In the equilibrium case, at fixed fill-

ing 〈ni〉 = 1, a critical value Uc ≈ 3.38 [68, 69] separates

a Mott insulating phase (U > Uc) from a superfluid phase

(U < Uc), the latter described by an effective Luttinger liq-

uid theory with c = 1. Below we set the initial state in the

Mott phase as the ground state of H with pre-quench condi-

tion U i > Uc, and investigate its quench dynamics under the

H with post-quench condition U f < Uc.

To simulate the unitary time evolution |Ψ(t)〉 =
U(t)|Ψ(t = 0)〉, we use the time-dependent density-matrix

renormalization group (t-DMRG) [64, 65]. We apply a

second-order Trotter decomposition of the short time propa-

gator U(∆t) = exp(−i∆tĤ) into a product of terms which

acts only on two nearest-neighbor sites. We use a dimen-

sion up to 5120, which guarantees that the neglected weight

in the Schmidt decomposition in each time step is less than

10−6. Once the |Ψ(t)〉 is computed, we partition the one-

dimensional chain of length L into two segments, ℓ and

L − ℓ, and calculate the subsystem reduced density matrix,

ρℓ(t) = TrL−ℓ|Ψ(t)〉〈Ψ(t)|. The entanglement Hamiltonian

is formally defined as ρA(t) = exp(−ĤE), but it is tech-

nically challenging to extract ĤE through this definition be-

cause the transformation ĤE(t) = − ln ρA(t) is non-linear.

Very recently, a generic scheme to obtain the operator form of

EH has been proposed in Ref. [58], which we briefly outline

here. The starting point is to define a set of basis operators

L̂a, which we take as the boson hopping operator b†ibj and

density interaction operator ni(ni − 1) according to the form

of the physical Hamiltonian. These operators define the varia-

tional space in which we search for the “best” EH in the form

HE =
∑

a waL̂a, where wa are parameters coupled to op-

erators L̂a. Practically, the variational scheme is equivalent

to solving the eigenvalue problem of the correlation matrix

Gab = 〈ξ|L̂aL̂b|ξ〉 − 〈ξ|L̂a|ξ〉〈ξ|L̂b|ξ〉 [58, 70, 71], where

|ξ〉 is a reference state chosen here as one eigenstate of ρA.

The lowest eigenvalue of Gab, i.e. g0, minimizes the variance

〈ξ|H2
E |ξ〉 − 〈ξ|HE |ξ〉

2, which can be interpreted as the “fluc-

tuation” of “Hamiltonian” HE =
∑

a waLa under |ξ〉. The

eigenvector of g0 gives rise to the estimate of {wa}. It has
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FIG. 1: Dynamics of the entanglement entropy. (a) Time-evolution

of entanglement entropy by quenching from various U i to U f = 3.3.

(b) Effective inverse of temperature β0 as a function of Equench −
E0, where E0 is the lowest energy of post-quench Hamiltonian

Ĥ(U f ) and Equench = 〈Ψ(t = 0)|H(U f )|Ψ(t = 0)〉. The black

line is the best fit to β0 ∝ (Equench −E0)
α, α = −0.641± 0.012.

Inset: Linear scaling of Sℓ =
πc

3β0
ℓ to the length of the subsystem ℓ.
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FIG. 2: Dynamics of the EH. (a) Spectrum of correlation matrix Gab(t). The lowest and second lowest eigenvalue crosses with each other

at t0 ≈ 1.65 (inset). The shaded area shows the short time regime t < t0. The parameters of the EH (see Eq. 4) as a function of time: (b)

interaction strength Un(t), (c) real part of couplings ReJn,n+1(t), (d) relative phase of couplings Φn,n+1(t) = arg Jn,n+1, where n labels

spatial lattice sites. Here we quench the Bose-Hubbard model (Eq. 3) from U i = 5.0 to U f = 3.3. The total system size L = 48 and the

typical subsystem length is ℓ = 9. Different symbols label local coupling and interaction strengths. The brown dashed line is guide to eye.

Inset of (b) is the cartoon picture of one dimension chain and entanglement bipartition.

been confirmed that [58], in the static case, this numerical re-

ceipt can give reliable EH that faithfully captures all features

of the reduced density matrices. In this work, we general-

ize and formulate this scheme using the matrix-product state

ansatz, which is amenable to simulating the time evolution

of the EH within the t-DMRG approach, and works well for

larger system sizes compared to exact diagonalization.

Entanglement entropy.— We compute the time-dependent

entanglement entropy and compare with the CFT results ob-

tained earlier. Fig. 1(a) shows the time evolution of the

entanglement entropy for various initial conditions U i. For

all cases, Sℓ(t) shows two temporal regimes: At short times

t < t∗, the entropy exhibits a linear rise, until it bends over to

an almost flat plateau. The linear increase can be accounted

for by the “ballistic” propagation of entanglement. At long

times t > t∗, the entropy saturates to its steady-state value.

As shown in inset of Fig. 1(b), the saturation of the entropy

depends linearly on the block length, which clearly exhibits

a “volume-law” scaling. In particular, based on the relation-

ship of Eq. 2, we can extract the pre-quench parameter β0

(or the inverse of entanglement temperature) In Fig. 1(b), we

show the dependence of β0 on the post-quench energy above

the ground state, Equench − E0, where Equench is the en-

ergy of the pre-quench state in the post-quench Hamiltonian,

and E0 is the post-quench ground state energy. It is clear

that β0 monotonically decreases with Equench − E0. Our

best fitting gives the scaling β0 ∝ (Equench − E0)
α, α ≈

−0.641± 0.012. It reflects that a higher initial energy trans-

lates to a higher effective temperature.

Entanglement Hamiltonian.— Next we turn to discuss the

time evolution of EH. Here we assume the EH has following

form (detailed discussion see [66]):

HE(t) = −
∑

i

(Ji,i+1(t)b
†
i bi+1+h.c.)+

∑

i

Ui(t)

2
ni(ni−1).

(4)

We map out the EH at each time step by using the scheme

described in the method section [58]. Fig. 2(a) shows the

spectrum of correlation matrix as a function of time. Interest-

ingly, there is a level crossing between the lowest and second

lowest eigenvalue around t0 ≈ 1.65 (inset of Fig. 2). After

this critical time, the lowest eigenvalue g0 monotonically de-

creases, which implies the trial EH works better in the time

regime t > t0. Next we will focus on the t > t0 regime and

discuss the salient features of the EH.

Fig. 2(b-c) shows the time evolution of the interaction

strength Ui(t), and the real part of the coupling strength

ReJi,i+1(t) after a global quench. First, both J and U show

sizable oscillations at early times t < t0, and later the subse-

quent dynamics gradually reduce (as indicated by the dashed

curve envelope). In particular, in the long-time limit t > t∗, all

coupling strengths approach nearly stationary values. Physi-

cally, this suggests the subsystem has equilibrated to a steady

state.

Second, before reaching equilibrium, it is found the imag-

inary part of boson hopping strength is nonzero. To show

this, we define the phase angle Φi,i+1 = argJi,i+1 =

tan−1 ImJi,i+1

ReJi,i+1
, and the phase angle directly relates to

the imaginary part of coupling strength ImJi,i+1(t) =
|Ji,i+1| sinΦi,i+1. In Fig. 2(d), Φi,i+1(t > 0) shows os-

cillation behaviors due to the non-equilibrium dynamics. For

comparison, in the static case we have Φi,i+1(t = 0) = 0.

Since ImJi,i+1 is directly coupled to the current operator

Ĵc = i[H,x] = i
∑

i(b
†
nbn+1 − bnb

†
n+1) (we set e = ~ = 1),

this implies that time-reversal symmetry is broken, and a non-

vanishing particle current flow emerges in time evolution.

The emergent current flow reflects quasiparticle propagation,

which is consistent with the picture that quasiparticles serve

as entanglement information carriers[25]. The inset of Fig.

2(d) single out one typical evolution (Φ2,3). It signals that

the current first flows from the entanglement cut into the bulk

(Φ2,3 > 0), and then reverse direction (Φ2,3 < 0), and reduces

to zero in the long time. This again shows the transport of

quasiparticles. At long times, the imaginary part tends to van-

ish with only small fluctuations around zero, suggesting that

the subsystem has reached equilibrium and net particle flow is
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absent. The appearance of current in the EH allows us to con-

clude that information spreading originates in the propagation

of quasiparticles between the two bipartition constituents [25].

Third, as shown in Fig. 2(b-c), in the long time limit t > t∗
the evolution of local coupling and interaction strengths at dif-

ferent spatial locations tend to converge to the same value,

indicating that the EH is spatially uniform away from the en-

tanglement cut. To further study the spatial dependence of the

EH at the long-time limit, we plot the effective inverse of tem-

perature β(x)/β0 (equivalent to time-averaged local coupling

strengths) in Fig. 3. In Fig. 3(a), we show the spatial depen-

dence of inverse entanglement temperature in the long time

limit. In particular, local temperatures are nearly uniformly

distributed away from the entanglement cut (x ≪ ℓ). Cru-

cially, this spatial dependence shows excellent agreement with

the CFT prediction Eq. (1). Moreover, we demonstrate that

the residual fluctuations near the entanglement cut x ∼ ℓ can

be interpreted as a finite (initial) temperature effect. In Fig.

3(b), we show that by increasing initial temperature (through

changing quenching parameters as discussed in Fig. 1(b)),

the spatial independence of long-time entanglement tempera-

tures becomes sharper near the entanglement cut x ∼ ℓ. The

consistency with the CFT Eq. (1) indicates that local temper-

atures should be completely flat (shown by dashed line) when

β0 → 0 (infinite initial temperature limit), which is also sup-

ported by our numerical results (inset of Fig. 3(b)).

Lastly, we stress that, the above findings offer an intuitive

trait of equilibrium. Physically, at the finite initial temper-

ature, the obtained local entanglement temperature β−1(x)
indicates that the equilibrium of a physical subsystem A de-

pends on distance from a “heat source” that is subsystem A. In

the infinite temperature limit, the entanglement temperature in

steady state is spatially independent. From this point of view,

it is appealing that a spatially independent β(x) reveals the

local temperature reaches the effective equilibrium.

Summary and Discussion.— We have addressed the out-of-

equilibrium dynamics of strongly-correlated systems from the

point of view of the entanglement Hamiltonian. By tracking

the time evolution of the entanglement Hamiltonian, we were

able to gain remarkable signatures of the entanglement propa-

gation and information scrambling. We demonstrate that, the

entanglement Hamiltonian involves an emergent current oper-

ator which drives the quasiparticle propagation towards equi-

librium. In the long-time limit the entanglement Hamiltonian

becomes stationary. In particular, spatially distributed entan-

glement temperature satisfies a universal feature as proposed

by conformal field theory, indicating the subsystem indeed

reaches equilibrium away from the entanglement cut. Our re-

sults show that the entanglement Hamiltonian provides funda-

mental insight into the non-equilibrium dynamics of quantum

many-body systems.

To our knowledge, the effective temperature in a driven

quantum system has not been explored in numerical calcu-

lations. Yet it is unclear how one may infer a meaningful

“temperature” in the study of non-equilibrium problems in

quantum many-body systems. Here, our numerical framework
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FIG. 3: Spatial dependence of the local entanglement tempera-

ture. (a) Local inverse of temperature β(x)/β0 at long time limit

(red diamonds) and related fitting (red line) to envelope function Eq.

(1). The background color shows gradient map of the inverse of tem-

perature. (b) Spatial dependence of local inverse of temperature for

various initial condition β0. The different β0 is achieved by varying

quenching parameters (see Fig. 1(b)): U i = 4.0, U f = 3.3 (yellow

squares), U i = 4.5, U f = 3.3 (blue circles), U i = 5.0, U f = 3.3
(red diamonds) and U i = 5.5, U f = 3.3 (green triangles). The solid

lines show best fit to the envelope function Eq. (1). Inset: Effective

temperature scaling to infinite initial temperature limit (β0 → 0).

provides a natural way to identify the effective “temperature”

of a subsystem and its dynamical evolution toward equilib-

rium, thus it allows for a direct measure of local temperatures

coming from the individual degrees of freedom enclosed in

subsystem.

In closing, we would like to make several remarks. Al-

though the limited system sizes prevent comparison over a

large range of subsystem sizes, we confirm the character-

istics of entanglement Hamiltonian with underlying scaling

behavior are robust on all system sizes that we can reach

[66]. Moreover, we investigated numerically a variety of one-

dimensional systems of different kinds [66]. Through these

studies, our results have implications well beyond the specific

model. Lastly, our findings open up several avenues for future

investigation. For instance, applying these tools for character-

izing the presence of equilibrium could be powerful in study-

ing many-body localization [8, 10, 77], where one of the key

features is the suppression of entanglement. In addition, tak-

ing into account the recent proposal in synthetic quantum sys-

tems [78], the dynamics of constructed entanglement Hamil-

tonian may be valuable for future experiments.
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