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The chain rule for the classical relative entropy ensures that the relative entropy between proba-
bility distributions on multipartite systems can be decomposed into a sum of relative entropies of
suitably chosen conditional distributions on the individual systems. Here, we prove a chain rule in-
equality for the quantum relative entropy. The new chain rule allows us to solve an open problem in
the context of asymptotic quantum channel discrimination: surprisingly, adaptive protocols cannot
improve the error rate for asymmetric channel discrimination compared to non-adaptive strategies.

Introduction.— The von Neumann entropy H(A) of a
quantum system A is a fundamental measure of uncer-
tainty. For example, it characterizes the optimal rates
for basic information-theoretic tasks such as compres-
sion or entanglement manipulation [1] and it can be used
to quantify entanglement and topological order in con-
densed matter systems [2–4]. The conditional von Neu-
mann entropy H(A1|A2) is defined via the relation

H(A1A2) = H(A1) +H(A2|A1) . (1)

Iterative use of this defining relation yields expressions
such as

H(An|B) =

n∑

i=1

H(Ai|Ai−1B) (2)

as visualized in Figure 1. This relation, called chain rule,
allows us to view the entropy of a large composite system
as a sum of entropies of its subsystems. The chain rule
property is also crucial in the definition of entanglement
measures such as the squashed entanglement [5].
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FIG. 1. A graphical visualization of the chain rule for the
von Neumann entropy given in (2). The entropy is taken with
respect to the blue systems conditioned on the gray systems.

In this Letter we propose a chain rule for the relative
entropy defined as

D(ρ‖σ) :=

{
tr ρ (log ρ− log σ) if supp(ρ) ⊆ supp(σ)
+∞ otherwise ,

for any states ρ and σ (where the latter does not need
to be normalized). The relative entropy is a more gen-
eral entropic quantity than the von Neumann entropy. It
contains the latter and other information measures, such
as the mutual information, as a special case. It can be
seen as a dissimilarity measure between quantum states
and is used to define various important quantities such
as the relative entropy of entanglement [6]. The relative
entropy characterizes the error exponent for asymmetric
hypothesis testing [7] or quantifies the amount of resource
in a resource theory [8, 9].

So far no chain rule for the quantum relative entropy
has been proven. This is in sharp contrast with the clas-
sical case where a chain rule is known [10, Theorem 2.5.3]
for the relative entropy (also called the Kullback-Leibler
divergence). For a pair of discrete random variables
(X,Y ) with alphabet X × Y, we have

D(PXY ‖QXY )

= D(PX‖QX) +
∑

x∈X
PX(x)D(PY |X=x‖QY |X=x) ,

where PXY and QXY are joint probability distributions,
but QXY does not need to be normalized. No quantum
analogue of such a chain rule is known, even if we relax
the equality with the following inequalities

D(PX‖QX) + min
x∈X

D(PY |X=x‖QY |X=x)

≤ D(PXY ‖QXY )

≤ D(PX‖QX) + max
x∈X

D(PY |X=x‖QY |X=x) . (3)

In this Letter, we prove a quantum version of the upper
bound (3) (see Theorem 2). We also show that it is tight
in the sense that there exist non-trivial scenarios where
the chain rule is an equality (see Corollary 3).

To model the quantum setting, the conditional distri-
butions are replaced by trace-preserving completely pos-
itive maps E and F from A to B and the initial states
are density operators ρRA and σRA, where R denotes a
reference system. To express the very last term in (3)
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in the quantum mechanical case we use a quantity called
non-stabilized channel relative entropy, which is defined
by

D̄(E‖F) := max
φA∈S(A)

D
(
E(φA)‖(F(φA)

)
,

where S(A) denotes the set of density operators on A.
Its stabilized counterpart [11] is defined by D(E‖F) :=
D̄(IA ⊗ E‖IA ⊗ F), where IA denotes the identity map
on A. In the following we will omit identity maps if they
are clear from the context. Motivated by the classical
case (3), it is natural to ask whether the following chain
rule

D
(
E(ρRA)‖F(σRA)

) ?
≤ D(ρRA‖σRA) +D(E‖F) (4)

is correct [12].
Limitations on a chain rule.— It turns out that (4)

does not hold in general because the channel relative en-
tropy is not additive under the tensor product as shown
next.

Proposition 1. There exist trace-preserving completely
positive maps E ,F such that

D(E ⊗ E‖F ⊗ F) > 2D(E‖F) . (5)

This implies that there exist density operators ρRA, σRA
for some finite-dimensional system R such that

D
(
E(ρRA)‖F(σRA)

)
> D(ρRA‖σRA) +D(E‖F) . (6)

Before proving the assertion we introduce another
quantity called amortized channel relative entropy [13]
defined by

DA(E‖F) := sup
φRA,ωRA∈S(R⊗A)

{D
(
E(φRA)‖F(ωRA)

)

−D(φRA‖ωRA)} , (7)

where R is a reference system whose dimension is not
constrained [14].

Proof of Proposition 1. We start by proving that (5) im-
plies (6). It is known [15, Theorem 3 and 6] that

D(E‖F) ≤ Dreg(E‖F) ≤ DA(E‖F) ,

where Dreg(E‖F) := limn→∞ 1
nD(E⊗n‖F⊗n). The state-

ment (5) implies that the first inequality can be strict. By
definition of the amortized channel relative entropy (7)
this directly implies (6).

It thus remains to prove (5). To do so we con-
struct an example of two trace-preserving completely
positive maps E and F on qubits that satisfy (5).
Consider the generalized amplitude damping channel

Aγ,β(ρ) =
∑4
i=1AiρA

†
i for γ, β ∈ [0, 1] with the Kraus

operators A1 =
√

1− β(|0〉〈0| +
√

1− γ|1〉〈1|), A2 =√
γ(1− β)|0〉〈1|, A3 =

√
β(
√

1− γ|0〉〈0| + |1〉〈1|), and
A4 =

√
γβ|1〉〈0|. For the two channels E = A0.3,0 and

F = A0.5,0.9 their corresponding Choi matrices are given
with respect to the computational basis by

JERB=




1 0 0
√

0.7
0 0 0 0
0 0 0.3 0√
0.7 0 0 0.7


 JFRB=




0.55 0 0
√

0.5
0 0.45 0 0
0 0 0.05 0√
0.5 0 0 0.95


.

Due to the joint-convexity of the relative entropy, the
maximization of the channel relative entropy can be
taken over all pure states. For an arbitrary density ma-
trix ρ ∈ S(A) let |φ〉RA = (

√
ρᵀR ⊗ idA)|Ω〉RA be its pu-

rification where |Ω〉RA =
∑
i |i〉R|i〉A and where R is iso-

morphic to A and thus

E(φRA) = (I ⊗ E)
(

(
√
ρᵀR ⊗ idA)|Ω〉〈Ω|RA(

√
ρᵀR ⊗ idA)

)

=
√
ρᵀRJ

E
RB

√
ρᵀR .

Hence we find

D(E‖F) = max
ρR∈S(R)

D
(√

ρᵀRJ
E
RB

√
ρᵀR‖

√
ρᵀRJ

F
RB

√
ρᵀR
)

= max
ρR=diag(p,1−p)

D
(√
ρRJ

E
RB

√
ρR‖
√
ρRJ

F
RB

√
ρR
)
.

The final step follows since both E and F are covariant
with respect to the Pauli-Z operator. Thus it suffices to
perform the maximization over input states with respect
to the one-parameter family of states ρR = p|0〉〈0| +
(1 − p)|1〉〈1| (see e.g. [16, Proposition II.4.]). Using the
fminbnd function in Matlab, we find D(E‖F) = 0.9176
for an optimizer ρR = diag(0.8355, 1− 0.8355). This can
also be seen by plotting the value of the relative entropy
over the interval p ∈ [0, 1] as shown in Figure 2.
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with respect to the input state ρR = diag(p, 1− p). The sub-
figure is a zoom of the large plot. It is evident that D(E‖F)
cannot be larger than 0.92.
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FIG. 3. A heat map of the value D(A⊗2
γ1,0
‖A⊗2

γ2,0.9
) −

2D(Aγ1,0‖Aγ2,0.9) where γ1, γ2 ∈ [0.1, 0.9]. This shows that
the non-additivity behavior of the stabilized channel relative
entropy under tensor products occurs for many channels.

showing that the stablized channel relative entropy is not
additive under the tensor product.

More generally, as shown in Figure 3, we can plot
the difference D(A⊗2γ1,0‖A

⊗2
γ2,0.9

) − 2D(Aγ1,0‖Aγ2,0.9) for
a wide range of γ1, γ2. Exploiting the symmetry that
Aγ,β is covariant with respect to the Pauli-Z opera-

tor and the tensor product channel A⊗2γ,β is also co-
variant under permutation, we can restrict the com-
putation of D(A⊗2γ1,0‖A

⊗2
γ2,0.9

) to a two-parameter state

ρR1R2 = diag(p1, p2, p2, 1−p1−2p2) (see e.g. [16, Proposi-
tion II.4.]) and we utilize the function quantum rel entr
from CVXQUAD [17]. We observe that the relative entropy
is not additive for a wide range of parameters.

Proposition 1 justifies the definition of a (non-
stabilized) regularized channel relative entropy as
D̄reg(E‖F) := limn→∞ 1

nD̄(E⊗n‖F⊗n) and similarly for
the stabilized quantity. This contrasts with the relative
entropy for states that is additive under the tensor prod-
uct.

Chain rule.— The main result of this Letter ensures
that (4) becomes valid if we replace the channel rela-
tive entropy term with its regularized version. More pre-
cisely, the inequality is correct whenever Dmax(E‖F) :=
maxφRA∈S(A⊗A)Dmax

(
E(φRA)‖F(φRA)) is finite, where

Dmax(ρ‖σ) := inf{λ ∈ R : ρ ≤ 2λσ} is the max-relative
entropy [18, 19].

Theorem 2 (Chain rule for relative entropy). Let ρA, σA
be density operators and E ,F be trace-preserving com-
pletely positive maps such that Dmax(E‖F) <∞. Then

D
(
E(ρA)‖F(σA)

)
≤ D

(
ρA‖σA

)
+ D̄reg(E‖F) . (8)

In addition, in case A = A1 ⊗ A2 and F is such that its
output does not depend on the input on A1, this inequality
can be strengthened to

D
(
E(ρA1A2

)‖F(σA1A2
)
)
≤D(ρA2

‖σA2
)+D̄reg(E‖F). (9)

Normalization properties of the relative entropy ensure
that the chain rule remains valid if σ is not normalized
and F is not trace-preserving.

Proof sketch. The full proof can be found in the Supple-
mental Material which includes references [20–24]. In-
stead we sketch the proof idea. We start with the ob-
servation that the chain rule follows for the max-relative
entropy from the triangle inequality [25, Lemma 2.1] —
a property that does not hold for the relative entropy.
To see this suppose F = R ◦ G for some channels R and
G. Then the triangle inequality together with the data-
processing inequality for the max-relative entropy [26]
give

Dmax

(
E(ρ)‖F(σ)

)

≤ Dmax

(
E(ρ)‖F(ρ)

)
+Dmax

(
F(ρ)‖F(σ)

)

= Dmax

(
E(ρ)‖F(ρ)

)
+Dmax

(
R ◦ G(ρ)‖R ◦ G(σ)

)

≤ Dmax

(
G(ρ)‖G(σ)

)
+Dmax

(
E(ρ)‖F(ρ)

)
. (10)

In case A = A1 ⊗ A2 and G is the partial trace over
A1 this has the form of (9). Based on that insight we
prove a variant of (10), where all three terms are re-
placed by smooth-max relative entropies together with
an additive error term that depends on the smoothing
parameter. Finally we use the asymptotic equipartition
property [26, 27], which ensures that for n-fold product
states the smooth-max relative entropy converges to the
relative entropy as n→∞, to obtain (9) from which (8)
follows as the special case where A1 is trivial.

In case E = F , inequality (8) simplifies to the data-
processing inequality, i.e., D(E(ρ)‖E(σ)) ≤ D(ρ‖σ). In
this sense (8) may be viewed as a generalized data-
processing inequality where not necessarily the same
channel is applied to both arguments, which then is com-
pensated with the regularized channel relative entropy
term.

Note that, in the chain rule (1) the term H(A2|A1)
still depends on the state of A1. However, if one instead
considers the implication for any fixed ρA1A2

H(A1A2)ρ ≥ H(A1)ρ + min
νA2|A1

=ρA2|A1

H(A2|A1)ν , (11)

where the minimization is over all ν whose conditional
state is identical to to the conditional state of ρ, i.e.,
ρA2|A1

:= ρ
−1/2
A1

ρA1A2
ρ
−1/2
A1

, the second term becomes in-
dependent of the marginal state of A1. This is particu-
larly desirable for an iterative version analogous to (2),
as the terms in the sum then only depend on the cor-
relations between a subsystem Ai and the rest, but not
on the state of the rest. One can now see that (11) in-
deed can be retrieved from our relative entropy chain
rule (9) by expressing the conditional von Neumann en-
tropy in terms of the relative entropy, i.e., H(A2|A1) =
−D(ρA1A2

‖ρA1
⊗ idA2

) (see Supplemental Material for
details).
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tor and the tensor product channel A⊗2γ,β is also co-
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putation of D(A⊗2γ1,0‖A

⊗2
γ2,0.9

) to a two-parameter state

ρR1R2
= diag(p1, p2, p2, 1−p1−2p2) (see e.g. [16, Proposi-

tion II.4.]) and we utilize the function quantum rel entr
from CVXQUAD [17]. We observe that the relative entropy
is not additive for a wide range of parameters.

Proposition 1 justifies the definition of a (non-
stabilized) regularized channel relative entropy as
D̄reg(E‖F) := limn→∞ 1

nD̄(E⊗n‖F⊗n) and similarly for
the stabilized quantity. This contrasts with the relative
entropy for states that is additive under the tensor prod-
uct.

Chain rule.— The main result of this Letter ensures
that (4) becomes valid if we replace the channel rela-
tive entropy term with its regularized version. More pre-
cisely, the inequality is correct whenever Dmax(E‖F) :=
maxφRA∈S(A⊗A)Dmax

(
E(φRA)‖F(φRA)) is finite, where

Dmax(ρ‖σ) := inf{λ ∈ R : ρ ≤ 2λσ} is the max-relative
entropy [18, 19].

Theorem 2 (Chain rule for relative entropy). Let ρA, σA
be density operators and E ,F be trace-preserving com-
pletely positive maps such that Dmax(E‖F) <∞. Then

D
(
E(ρA)‖F(σA)

)
≤ D

(
ρA‖σA

)
+ D̄reg(E‖F) . (8)

In addition, in case A = A1 ⊗ A2 and F is such that its
output does not depend on the input on A1, this inequality
can be strengthened to

D
(
E(ρA1A2

)‖F(σA1A2
)
)
≤D(ρA2

‖σA2
)+D̄reg(E‖F). (9)

Normalization properties of the relative entropy ensure
that the chain rule remains valid if σ is not normalized
and F is not trace-preserving.

Proof sketch. The full proof can be found in the Supple-
mental Material which includes references [20–24]. In-
stead we sketch the proof idea. We start with the ob-
servation that the chain rule follows for the max-relative
entropy from the triangle inequality [25, Lemma 2.1] —
a property that does not hold for the relative entropy.
To see this suppose F = R ◦ G for some channels R and
G. Then the triangle inequality together with the data-
processing inequality for the max-relative entropy [26]
give

Dmax

(
E(ρ)‖F(σ)

)

≤ Dmax

(
E(ρ)‖F(ρ)

)
+Dmax

(
F(ρ)‖F(σ)

)

= Dmax

(
E(ρ)‖F(ρ)

)
+Dmax

(
R ◦ G(ρ)‖R ◦ G(σ)

)

≤ Dmax

(
G(ρ)‖G(σ)

)
+Dmax

(
E(ρ)‖F(ρ)

)
. (10)

In case A = A1 ⊗ A2 and G is the partial trace over
A1 this has the form of (9). Based on that insight we
prove a variant of (10), where all three terms are re-
placed by smooth-max relative entropies together with
an additive error term that depends on the smoothing
parameter. Finally we use the asymptotic equipartition
property [26, 27], which ensures that for n-fold product
states the smooth-max relative entropy converges to the
relative entropy as n→∞, to obtain (9) from which (8)
follows as the special case where A1 is trivial.

In case E = F , inequality (8) simplifies to the data-
processing inequality, i.e., D(E(ρ)‖E(σ)) ≤ D(ρ‖σ). In
this sense (8) may be viewed as a generalized data-
processing inequality where not necessarily the same
channel is applied to both arguments, which then is com-
pensated with the regularized channel relative entropy
term.

Note that, in the chain rule (1) the term H(A2|A1)
still depends on the state of A1. However, if one instead
considers the implication for any fixed ρA1A2

H(A1A2)ρ ≥ H(A1)ρ + min
νA2|A1

=ρA2|A1

H(A2|A1)ν , (11)

where the minimization is over all ν whose conditional
state is identical to to the conditional state of ρ, i.e.,
ρA2|A1

:= ρ
−1/2
A1

ρA1A2
ρ
−1/2
A1

, the second term becomes in-
dependent of the marginal state of A1. This is particu-
larly desirable for an iterative version analogous to (2),
as the terms in the sum then only depend on the cor-
relations between a subsystem Ai and the rest, but not
on the state of the rest. One can now see that (11) in-
deed can be retrieved from our relative entropy chain
rule (9) by expressing the conditional von Neumann en-
tropy in terms of the relative entropy, i.e., H(A2|A1) =
−D(ρA1A2

‖ρA1
⊗ idA2

) (see Supplemental Material for
details).
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An important corollary to Theorem 2 is when the maps
are of the form I ⊗ E and I ⊗ F . The right hand side
then simplifies to the more common (stabilized) relative
entropy between channels.

Corollary 3. Let E be a trace-preserving completely pos-
itive map and F be a completely positive map. Then

DA(E‖F) = Dreg(E‖F) . (12)

Proof. It is known [15, Theorem 3 and 6] that
Dreg(E‖F) ≤ DA(E‖F). Theorem 2 applied to channels
IR ⊗ E and IR ⊗F shows that

D
(
E(ρRA)‖F(σRA)

)
−D(ρRA‖σRA)

≤ D̄reg(IR ⊗ E‖IR ⊗F) .

To conclude it suffices to observe that for any system R
we have D̄reg(IR ⊗ E‖IR ⊗F) ≤ Dreg(E‖F).

Corollary 3 shows that for any trace-preserving com-
pletely positive map E and any completely positive map
F there exist states ρRA and σRA such that the chain
rule holds with equality.

The regularization of relative entropy term in Theo-
rem 2 is necessary in full generality, as shown by Propo-
sition 1. However, for channels with a specific structure
their stabilized channel relative entropy is additive un-
der the tensor product which implies that Dreg(E‖F) =
D(E‖F). Examples of such channels are

(i) classical-quantum channels [13, Lemma 25]

(ii) covariant channels with respect to the unitary
group [16, Corollary II.5]

(iii) E arbitrary and F a replacer channel (i.e., F(X) =
ω trX for ω ∈ S(B)) [11, 13]

(iv) environment-seizable channels [15]

We can single-letterize the chain rule from The-
orem 2 by replacing the regularized channel rel-
ative entropy term with the Belavkin-Staszewski

channel relative entropy defined by D̂(E‖F) :=

maxφRA∈S(A⊗A) tr E(φ) log
(
E(φ)

1
2F(φ)−1E(φ)

1
2 ). We

note that the logarithmic trace inequality [28, 29] (see

also [30, Theorem 4.6]) ensures that D(E‖F) ≤ D̂(E‖F).
Furthermore, the Belavkin-Staszewski channel relative
entropy is additive under tensor products [31, Lemma 6].
Another benefit from this relaxation is the fact that
D̂(A‖B) has an explicit form and is thus efficiently com-
putable [31, Lemma 5].

Asymptotic quantum channel discrimination.— A fun-
damental task in quantum information theory is to dis-
tinguish between two quantum channels E ,F . For this
problem one usually differentiates between two different
classes of strategies:

Non-adaptive strategies (also called parallel strategies):
Here we are given “black-box” access to n uses of a chan-
nel G, which is either E or F , that can be used in parallel

before performing a measurement. More precisely, for an
arbitrary state ρAnR ∈ S(A1 ⊗ . . .⊗ An ⊗R) with a ref-
erence system R we create the state σBnR = G⊗n(ρAnR)
and perform a measurement on σBnR. Based on the mea-
surement outcome we try to guess if G = E or G = F .
The protocol is depicted in Figure 4. It has been shown
recently [15, Theorem 3] that in the asymmetric regime
where we fix the type-I error to be bounded by ε, the
asymptotic optimal rate of the type-II error exponent is
given by Dreg(E‖F), when ε goes to 0. A type-I error
is the rejection of a true null-hypothesis while a type-II
error is the non-rejection of a false null-hypothesis.
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FIG. 4. General protocol for non-adaptive strategies for the
task of channel discrimination. The channel G is either E or
F and the task is to distinguish between these two cases.

Adaptive strategies (also called sequential strategies):
Here we are also given “black-box” access to n uses of
a channel G which is either E or F . However unlike in
the non-adaptive scenario, after each use of a channel we
are allowed to perform an adaptive trace-preserving com-
pletely positive map Nk before we perform a measure-
ment at the end. More precisely, for an arbitrary state

ρ
(0)
AR0

∈ S(A ⊗ R0) we create ρ
(k)
ARk

= (Nk ◦ G)(ρ
(k−1)
ARk−1

)

for k = 1, . . . , n. Finally we perform a measurement on

ρ
(n)
ARn

and based on the outcome try to guess if G = E
or G = F . The strategy is depicted in Figure 5. The
asymptotically optimal rate of the type-II error exponent
for this strategy is given by DA(E‖F) [15, Theorem 6].
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FIG. 5. General protocol for adaptive strategies for the task
of channel discrimination.

Because a non-adaptive strategy can be viewed as a
particular instance of an adaptive strategy [32] it follows
that adaptive strategies are clearly as powerful as non-
adaptive ones, which in technical terms means

Dreg(E‖F) ≤ DA(E‖F) .

It has been an open question if adaptive strategies can
be more powerful for the task of asymptotic quantum
channel discrimination [13, 15, 33, 34]. For some spe-
cial classes of channels, such as classical and classical-
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Because a non-adaptive strategy can be viewed as a
particular instance of an adaptive strategy [32] it follows
that adaptive strategies are clearly as powerful as non-
adaptive ones, which in technical terms means

Dreg(E‖F) ≤ DA(E‖F) .

It has been an open question if adaptive strategies can
be more powerful for the task of asymptotic quantum
channel discrimination [13, 15, 33, 34]. For some spe-
cial classes of channels, such as classical and classical-
quantum channels it has been shown that adaptive pro-



5

tocols cannot improve the error rate for asymmetric chan-
nel discrimination [13, 33]. Corollary 3 now proves that
this is the case for all quantum channels because

Dreg(E‖F) = DA(E‖F) .

We note that this is surprising for various reasons. In
the symmetric Chernoff setting [35–37] adaptive proto-
cols offer an advantage over non-adaptive ones. Fur-
thermore, in the non-asymptotic setting adaptive proto-
cols also outperform non-adaptive strategies [35, 36, 38].
Apart from its fundamental importance the channel dis-
crimination problem features immediate applications in
various areas ranging from quantum metrology [39] to
the study of resource theories [40].
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