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We develop a proposal to realise a widely tunable and clean quantum phase transition in bilayer graphene
between two paradigmatic fractionalized phases of matter: the Moore-Read fractional quantum Hall state and
the composite Fermi liquid metal. This transition can be realized at total fillings ν = ±3 + 1/2 and the critical
point can be controllably accessed by tuning either the interlayer electric bias or the perpendicular magnetic
field values over a wide range of parameters. We study the transition numerically within a model that contains
all leading single particle corrections to the band-structure of bilayer graphene and includes the fluctuations
between the n = 0 and n = 1 cyclotron orbitals of its zeroth Landau level to delineate the most favorable
region of parameters to experimentally access this unconventional critical point. We also find evidence for a
new anisotropic gapless phase stabilized near the level crossing of n = 0/1 orbits.

Introduction. The advancements in the quality of graphene
and the increased sophistication of techniques to probe it have
positioned it as a rich platform to study the strongly corre-
lated physics of the quantum Hall regime. Recent hallmarks
of this progress include the observation of bubble phases
in monolayer graphene [1], even denominator fractional
quantum Hall states near a pseudo-spin transition in mono-
layer graphene [2], fractional Chern insulators in graphene-
hexagonal boron nitride hetero-structures [2], even denomi-
nator fractional quantum Hall states in bilayer graphene [3–
5], the observation of exciton condensation in double bilayer
graphene [6, 7], and new sequences of interlayer correlated
fractional quantum Hall states in double-layer graphene [8].

In this letter, we would like to offer a proposal to reap
yet another fruit of this progress. We will show that bilayer
graphene (BLG) is an ideal platform to realize a particularly
clean quantum phase transition between two remarkable frac-
tionalized phases of matter: the composite fermi liquid (CFL)
metal [9] and the non-Abelian Moore-Read (MR) fractional
quantum Hall state [10]. Our study builds upon previous nu-
merical studies [4, 11–14] by incorporating our recently re-
fined understanding of the Hamiltonian of the nearly eightfold
degenerate zero Landau level of BLG [15]. There are two key
ingredients that allow to controllably tune through this phase
transition. One of them, first recognized in Ref. [11], is that
the cyclotron orbital character of one of the Landau levels can
be tuned continuously from mostly n = 1 character at small
perpendicular magnetic fields into mostly n = 0 at high per-
pendicular fields. The second is the ability to enhance the
splitting between n = 0 and n = 1 cyclotron orbits via the
interlayer electric bias [16], whereby reducing the quantum
fluctuations that make the MR state unexpectedly strong at
zero interlayer bias in experiments [4, 5] in order to facilitate
its quantum melting into the CFL state. The expected phase
diagram is depicted in Fig. 1.

Theoretically the MR state can be understood as a p + ip
paired state of the CFL [17, 18]. Unlike ordinary metals, the
CFL has been argued to not have generic pairing instabili-
ties at low temperatures [19, 20], although an earlier study
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Fig. 1: (Color online) (a) Phase diagram of two-orbital model. ∆10

is the orbital splitting and γ parametrizes form factors controlled by
magnetic field. We identify the MR, two types of CFL states, and an
intermediate anisotropic gapless phase (AGP). The shaded region is
the expected range of parameters accessed in BLG by tuning B[T ]
and the interlayer electric bias u. (b) The phase diagram of SU(2)
two-valley model [see Eq. 1] as a function of B[T ] or γ expected to
be realised at u = 0. There are three phases: the valley polarized
MR, and the valley polarized and un-polarized CFL states.

claimed the contrary [17]. If the CFL is stable against pairing,
it would be possible to have an ideal stable phase transition
from it into MR state by adding sufficiently large perturba-
tions to the Hamiltonian. Originally, it was argued that this
transition would be first order [19], but this conclusion was
challenged more recently by studies that argued that a stable
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continuous phase transition between the CFL and MR states
is possible [20, 21]. Numerical studies support a possible
continuous transition [22–24], although a definitive numerical
conclusion is currently out of reach due to system size limita-
tions, we have found certain features in the finite size spectra
that indicate a possible continuous phase transition [34].

Experimentally, the phase transition has been studied by
tuning subband level crossings [25, 26] and more recently hy-
drostatic pressure [27–29] in GaAs quantum wells. The sub-
band level crossing, however, produces a rather abrupt change
of the microscopic parameters of the Hamiltonian and the
transition is therefore likely first order [24]. The isotropic hy-
drostatic pressure experiments, found the MR state transitions
into a compressible phase with anisotropic transport proper-
ties, in resemblance to the transitions induced by applying
in-plane field [30–33], and therefore potentially placing the
problem on a different universality class from that of inter-
est here. Additionally, one limitation of the pressure-driven
platform is that it is difficult to capture it with an ideal Hamil-
tonian. Further details on these precedents are in [34].

Models and Key Results. The zero Landau level (ZLL)
manifold of BLG comprises eight internal Landau levels that
we denote by ψn,τ,σ , where n = {0, 1}, τ = {K,K ′} and
σ = {↑, ↓} designates orbits, valleys and spins labels respec-
tively. The ψ1 orbitals can be approximated as having weight
on the n = 0 and n = 1 cyclotron Galilean orbitals (de-
noted by φ0,1) [4, 13]: ψ1,K = (

√
1− γφ1, 0,

√
γ φ0, 0) and

ψ1,K′ = (0,
√

1− γ φ1, 0,
√
γ φ0). Here, the different com-

ponents denote amplitudes on (A,B′, A′, B) sites in Fig. 2
(b), and γ ∈ [0, 1] is a parameter controlled primarily by the
perpendicular magnetic field whose typical values are shown
in Fig. 2 (c). On the other hand, the ψ0 orbitals can be ap-
proximated as having only n = 0 Galilean orbitals: [4, 13]
ψ0,K = (φ0, 0, 0, 0) and ψ0,K′ = (0, φ0, 0, 0). A general
interaction Hamiltonian projected onto a multi-flavor Landau
level can be written as:

V =
∑
q{α}

v(q)

2A
Fα1α2

(q)Fα3α4
(−q) : ρ†α1α2

(q)ρα3α4
(q) :, (1)

where v(q) is the Fourier transform of the un-projected in-
teraction, Fαα′(q) is the density form factor determined by
the wavefunctions, and ραα′(q) are the flavor resolved intra-
Landau-level guiding center density operators (see e.g. [35]).
We set magnetic length lB ≡

√
~c/eB as the unit of length

and e2/εlB as the unit of energy.
Our ideal Hamiltonian of interest is comprised of the

Coulomb interaction projected onto the single ψ1,τ Landau
level. The form factor F11(q) is given by F11(q) = (1 −
γ)F1(q)+γF0(q), where F0,1(q) = exp(−q2/4)L0,1[q2/2]
are the form factors for n = 0 and n = 1 Galilean Landau lev-
els. Therefore the Hamiltonian continuously interpolates from
a n = 1 Galilean Landau level at small γ (weak perpendicular
fields) to an n = 0 Galilean Landau level at large γ (strong
perpendicular fields). We have found that at half filling the
MR is the ground state of this ideal Hamiltonian for γ . 0.15

(b) Nearly 8-fold degenerate LL(a) Single particle splittings
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Fig. 2: (Color online) (a) The single particle splittings of BLG as a
function of interlayer bias u. (b) The schematic depiction of the zero
Landau level (ZLL) manifold of BLG |τnσ〉 on (A,B′, A′, B) sites.
Here, τ = {K,K′} ≡ {+,−} denotes valleys, n and σ are LL and
spin index, respectively. (c) The relationship between parameter γ
and the magnetic field B. Figures (a) and (b) are from [15], the data
of (c) is from [4].

whereas for γ & 0.15 the CFL is the ground state. To demon-
strate that this conclusion remains robust in the presence of
other flavors and to delineate the region of parameters to re-
alize such ideal limit within more realistic models, we will
study several modifications to this ideal Hamiltonian.

The first modified Hamiltonian is an SU(2) symmetric ver-
sion of the ideal Hamiltonian we just described, containing
two-valleys ψ1α, α = {K,K ′}. Therefore the form factors
are Fα,α′(q) = δα,α′F11(q). In this case we will show that
the ground state spontaneously polarizes onto a single valley
for γ . 0.5 and therefore the phase transition region from MR
to CFL remains unmodified by the presence of a second de-
generate valley (or spin). This interesting regime of vanishing
single-particle valley splitting with spontaneous valley polar-
ization can be best achieved at total filling ν = 3 + 1/2 near
zero interlayer bias u ≈ 0. In the supplementary we describe
how valley dependent interactions, which break the SU(2) val-
ley symmetry down to U(1), are not expected to significantly
affect the location of the phase transition.

The second modified Hamiltonian contains two Landau
levels with different orbital character and the same val-
ley ψαK , α = {0, 1}. There is no flavor conservation
in this case and thus the form factors contain flavor off-
diagonal components, and are given by: F00(q) = F0(q),
F11(q) = (1− γ)F1(q) + γF0(q), F10(q) = [F01(−q)]∗ =√

1− γ exp(−q2/4)[−i(qx + iqy)/
√

2]. We also add a sin-
gle particle spliting ∆10 between these two orbital flavors. For
this model, we will demonstrate that a single particle splitting,
∆10, favouring ψ1,K over ψ0,K of about ∆10 & 0.2e2/εlB ,
is enough to reach the behavior of the ideal Hamiltonian con-
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Fig. 3: (Color online) (a) The SU(2) Casimir operator S2 as a func-
tion of γ. (b) and (c) show the energy spectra as a function of γ
for valley-unpolarized sector (b) and valley-polarized sector (c). (d)
The cluster of momentum determined by the trial wave function for
polarized CFL (upper) and unpolarized CFL (lower).

taining only the ψ1,K Hamiltonian previously described. Ac-
cording to our estimates the built-in splitting between these
orbitals in BLG is sufficient to reach this limit, but addition-
ally, we will show that this splitting can be further enhanced
at total filling ν = −3 + 1/2 by applying interlayer effective
field, giving us confidence that the ideal regime to realize the
single-component MR to CFL transition can be accessed in
BLG, in agreement with previous DMRG studies [4].

We will resort to numerical exact diagonalisation in the
torus geometry [36, 37] to investigate the nature of the ground
states as a function of γ and ∆10. Throughout the main
body of this paper we will focus on the Coulomb interaction,
v(q) = 2πe2/ε|q|, however, in the supplementary we demon-
strate that the key conclusions remain for more realistic inter-
actions that account for screening [34].

Two-valley model. We begin by studying an SU(2) sym-
metric model including the ψ1K and ψ1K′ valleys. The ideal
Hamiltonian describing a single valley can be obtained sim-
ply by restricting to the SU(2) subspace with maximal val-
ley polarization. We denote the valley polarization as Sz =
(NK − NK′)/2. Figure 3 (a) depicts the value of SU(2)
Casimir operator, S2, which determines the valley polariza-
tion of the ground state as a function of γ. We find that the
system jumps from a polarized state into a singlet at γ ∼ 0.5,
although a small intermediate range of γ with partial polariza-
tion cannot be completely discarded. It is well documented,
experimentally [38–40] and numerically [41–43], that in the
SU(2) limit the CFL in the n = 0 LL (γ → 1) is a two-
component unpolarized singlet. It is also well-established that
in the SU(2) limit of an n = 1LL (γ → 0) the MR state
is a fully polarised ferromagnet spontaneously breaking the
SU(2) symmetry [41, 44, 45]. The polarization we find is
consistent with these expectations and it is therefore natural

to conclude that in these limits we have a valley singlet CFL
state at γ → 1 and a valley polarized state at γ → 0. How-
ever, we have found another phase at intermediate γ, namely,
a single component Stoner-type CFL with spontaneous valley
polarization.

We will now show that the quantum numbers of the states
for 0.15 . γ . 0.5 indeed are those of a fully polarized CFL
while those of the state present for γ & 0.5 correspond to
a two-component un-polarized CFL. To do so, we consider
trial CFL wavefunctions [46] in the torus [22, 36, 43, 47].
We review the construction of these trial CFL wavefunc-
tions in [34]. The key quantum number that allows di-
rect comparison with numerics is the many-body momentum,
which, for the square torus reads as K = (L/N)

∑
i ki =

(2π/N)
∑
i(−m2i,m1i) mod(N) (m1,2 ∈ Z mod(Nφ)).

This momentum in units of (2π/N) is the same that labels
the states of the spectrum in Fig. 3 (b) and (c) [48]. The clus-
ter of momentum that correspond to the states that minimise
the trial mean-field energy of a single component CFL [43]
are (Kx,Ky) ∈ (2π/N){(1, 1), (4, 0), (0, 4)} for N = 8 par-
ticles and are shown in Fig. 3 (d). We see that these states
have the same quantum numbers of those obtained from ex-
act diagonalisation for 0.15 . γ . 0.5. Following a simi-
lar analysis for a two-component CFL singlet state [49], one
can show that for 8 particles there is a unique finite size clus-
ter forming a closed shell in momentum, namely, that the
lattice of displacement vectors transforms trivially under the
point group of the square torus. This state forms at momen-
tum (Kx,Ky) = (2π/N)(4, 4) = (π, π) and is depicted in
Fig. 3 (d). This is indeed coincides with the momentum of the
ground state realized for γ & 0.5 in Fig 3 (b) .

Therefore, we have found that the SU(2)-valley invariant
system has three phases: (I) a valley polarized MR Pfaffian
state for γ . 0.15, (II) a valley polarized single component
CFL state for 0.15 . γ . 0.5, and (III) a valley un-polarized
two component CFL state for γ & 0.5, as illustrated in Fig. 1
(b). For the ideal Hamiltonian from Eq. (1) of a single val-
ley case then we would simply encounter phases (I) and (II).
In the supplementary material [34] we demonstrate that these
conclusions still hold for larger system sizes and for more
realistic screened versions of the Coulomb interaction, and
we also provide arguments for why the essential physics of
the ground states under consideration are robust. For bilayer
graphene, this leads us to expect that the transition between
MR and CFL can be achieved near ν = ±3+1/2 forB ∼ 20T
[see Fig. 1 and Fig. 2(b) ]. Unfortunately, the Stoner type
transition between the single and two-component CFL states
is expected at about B ∼ 80T . A related Stoner transition be-
tween single and two component CFL states has been recently
discussed in monolayer graphene [50].

Two-orbital model. A special feature of the zeroth Landau
level of BLG is the relatively small energy splitting between
the ψ1 orbits with n = 1 cyclotron character and the ψ0 orbits
with n = 0 cyclotron character. Therefore it is important
to assess how robust the phases are to quantum fluctuations
between these levels. To do so, we consider a model with
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Fig. 4: (Color online)The energy spectra of two-orbital model as a
function of γ at different single particle splitting ∆10 between ψ0

and ψ1 orbits: (a) ∆10 = 0.08, (b) ∆10 = 0.2.

the Coulomb interaction, v(q) = 2πe2/ε|q|, projected onto
these two levels and an additional single particle splitting ∆10

favouring ψ1. At total filling ν = 1/2 it is clear that in the
limit in which ∆10 � e2/εlB , we will recover the physics of
the ideal limit containing only the half-filled ψ1 orbits.

The energy spectra of two-orbital model versus γ and ∆10

are shown in Figs. 4 and supplementary material [34]. We
have found that this limit is achieved by a splitting ∆10 &
0.2e2/εlB as shown in Fig. 1(a) and Fig. 4 (b). At smaller ∆10

we have found another CFL state labelled CFL-I in Fig. 1 (a).
CFL-I is the ordinary CFL realized at half-filled ψ0 orbit. The
reason why this CFL becomes the ground state near ∆10 = 0
is that there is an exchange energy gain to occupy n = 0 orbits
due to the smaller spatial extension and hence larger exchange
holes [35], and therefore at half-filling the state is the conven-
tional n = 0 CFL. Here, ∆10 splits the degeneracy of the MR
Pfaffian and anti-Pfaffian. An interesting possibility is that it
could be possible, by controlling the interlayer bias, to tune
experimentally from Pfaffian to anti-Pfaffian by changing the
sign of ∆10, as further discussed in [34].

Interestingly, we have also encountered an anisotropic gap-
less phase (AGP) at intermediate orbital splitting and mag-
netic field in Fig. 1(a). This phase features a multiplicity of
low lying states and a robust ground state quasi-degeneracy
indicative of a gapless broken symmetry state, as shown in
Fig. 4 (a) and in the supplementary. Additionally the spec-
trum has a high sensitivity to changes of the aspect ratio of
the torus, which indicates the breaking of rotational symme-
try, shown in the supplementary [34]. This phase could be
accessed in BLG near filling ν = 3 + 1/2 and therefore we
hope that future numerical and experimental studies can shed
more light on its nature. We find that many phases meet near
the n = 1/0 level crossing around ∆10 ∼ 0.11e2/εlB and
γ . 0.15 [34]. It is possible that other phases might be sta-
bilized near this level crossing, such as the non-Abelian 221
parton state, as advocated in Ref. [51].We hope that future
studies will further address this interesting possibility.

Region of parameters accessed in BLG. In Fig. 1(a) we
have superimposed the expected range of parameters [52] that
can be accessed in BLG by tuning perpendicular magnetic
field and the interlayer electric bias u. The region for u ≤ 0
should be accessible at ν = 3 + 1/2, while the region of posi-

tive u ≥ 0 should be accessible for ν = −3+1/2. This can be
inferred from Fig.2 which shows that the single particle level
splitting ∆10 decreases with |u| for ν = 3+1/2 and increases
with |u| ν = −3 + 1/2. Therefore, ν = −3 + 1/2 can be
brought much closer to the ideal limit to study the ideal CFL to
MR transition by applying large interlayer bias, although dif-
ferent physics could be potentially accessed ν = 3 + 1/2 with
the interlayer bias, such as the nearly SU(2) valley symmet-
ric conditions for u ≈ 0 and the new intermediate anisotropic
gapless phase (AGP) shown in Fig. 1(a).

Discussion and summary. We have advanced a proposal
for realising a particularly clean and widely tuneable phase
transition between the MR and CFL states in BLG at fill-
ings ν = ±3 + 1/2. The phase transition can be tuned by
the perpendicular magnetic field, as in phase transitions pre-
viously realised in monolayer graphene [2, 14, 53, 54]. The
simplest version of this phase transition is better achieved at
ν = −3 + 1/2 at large interlayer biases |u| & 50meV , where
we have demonstrated that both valley and orbital fluctuations
become insignificant. This filling factor at such interlayer bi-
ases is therefore an ideal platform to study the CFL to MR
transition. At the filling factor ν = 3+1/2 one encounters in-
creased valley fluctuations for vanishing interlayer bias, where
one expects a near SU(2) valley symmetry. We have shown
that this symmetry is spontaneously broken and the system is
also expected to transition from a spontaneously valley po-
larised MR state into a spontaneously valley polarised Stoner
CFL enriched by the physics of valley symmetry breaking.
At this filling the interlayer electric field tends to enhance
n = 0/1 orbital fluctuations, and this can be used to access
a potentially new anisotropic gapless phase (AGP) near the
level crossing of n = 0 and n = 1 orbits of a common valley
as shown in Fig. 1(a).
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[32] G. A. Csáthy, J. S. Xia, C. L. Vicente, E. D. Adams, N. S. Sul-
livan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 94, 146801 (2005).

[33] Zheng Zhu, Inti Sodemann, D. N. Sheng, Liang Fu, Phys. Rev.
B 95, 201116(R) (2017).

[34] see supplementary material for more details [55–73].
[35] G. F. Giuliani and G. Vignale, Quantum Theory of the Electron

Liquid (Cambridge University Press, Cambridge,2005).
[36] F. D. M. Haldane, Phys. Rev. Lett. 55, 2095 (1985).
[37] Daijiro Yoshioka, Phys. Rev. B 29, 6833(1984).
[38] R. R. Du, A. S. Yeh, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer,

and K. W. West, Phys. Rev. Lett. 75, 3926 (1995).
[39] I. V. Kukushkin, K. v. Klitzing, and K. Eberl, Phys. Rev. Lett.

82, 3665 (1999).
[40] L. Tiemann, G. Gamez, N. Kumada, K. Muraki, Science 335,

828 (2012).
[41] K. Park, V. Melik-Alaverdian, N. E. Bonesteel, and J. K. Jain,

Phys. Rev. B 58, R10167(R) (1998).
[42] K. Park, J. K. Jain, Solid State Communications 119, 291

(2001).
[43] Zheng Zhu, D. N. Sheng, Liang Fu, Inti Sodemann, Phys. Rev.

B 98, 155104 (2018).
[44] R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998).
[45] A. E. Feiguin, E. Rezayi, Kun Yang, C. Nayak, and S. Das

Sarma,Phys. Rev. B 79, 115322 (2009).
[46] E. Rezayi and N. Read, Phys. Rev. Lett. 72, 900 (1994).
[47] N. Read, Semiconductor Science and Technology, 9, 1859

(1994).
[48] We only show states in the upper quarter of the many-body Bril-

louin zone since the remainder are related by point group sym-
metry.

[49] More details on the construction of trial CFL states in the torus
for two-component systems can be found in Ref. [43].
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