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We use self-consistent Hartree-Fock calculations performed in the full π-band Hilbert space to
assess the nature of the recently discovered correlated insulator states in magic-angle twisted bilayer
graphene (TBG). We find that gaps between the flat conduction and valence bands open at neutrality
over a wide range of twist angles, sometimes without breaking the system’s valley projected C2T
symmetry. Broken spin/valley flavor symmetries then enable gapped states to form not only at
neutrality, but also at total moiré band filling n = ±p/4 with integer p = 1, 2, 3, when the twist
angle is close to the magic value at which the flat bands are most narrow. Because the magic-angle
flat band quasiparticles are isolated from remote band quasiparticles only for effective dielectric
constants larger than ∼ 20, the gapped states do not necessarily break C2T symmetry and as
a consequence the insulating states at n = ±1/4 and n = ±3/4 need not exhibit a quantized
anomalous Hall effect.

Introduction.— A small relative twist between adjacent
graphene layers produces a triangular lattice moiré pat-
tern with a spatial periodicity that is inversely related to
twist angle. It was noticed [1, 2] some years ago that at
a series of magic twist angles θ, the moiré pattern yields
very flat low-energy bands that promise strong electronic
correlations. This promise has now been realized thanks
to recent experimental studies [3–12] of bilayers with ac-
curately controlled twist angles that exhibit interaction-
induced insulating ground states at moiré band [2] filling
factors n = ±p/4, where p = −3, . . . , 3 is the total charge
per moiré unit cell. The insulating states are flanked by
superconducting domes [5, 7]. This exciting discovery has
inspired a flurry of theoretical work [13–36] directed to-
ward achieving a more complete understanding of the in-
sulating states and their superconducting satellites. Pre-
vious work on the insulating states has been based mainly
on an indirect approach that starts by identifying effec-
tive lattice models for the flat moiré bands, and then
combines these with generalized Hubbard models to ad-
dress interaction phenomena. In this Letter we explore a
different approach.

At small twist angles the electronic structure of twisted
bilayer graphene can be accurately described using a con-
tinuum model [2, 39] in which single-particle electronic
states with a four-level spin/valley internal flavor degree-
of-freedom are approximated by four-component enve-
lope function spinors that specify π-orbital amplitudes on
the bilayer’s four sublattices. The simplest version of the
continuum model [2] adds a spatially periodic interlayer
hopping term to isolated layer π-orbital Dirac models.
This moiré band Hamiltonian is spin-independent, and
its projections onto graphene’s two valleys are related by
time-reversal symmetry. Up to an overall energy scale, its
spectrum depends on a single twist-angle dependent pa-
rameter α = w/~vkθ where w ≈ 110 meV is an inter-layer
tunneling amplitude, v ≈ 106 m/s is the Dirac velocity,
kθ = 2K sin(θ/2) is the momentum separation between
the Brillouin-zone (BZ) corners in different layers, and K

is the single-layer BZ corner momentum magnitude.

0.7 0.9 1.1 1.3 1.5

θ(◦)

0.00

0.05

0.10

0.15

0.20

ε−
1

Gapless

C2T preserving,
gapped

C2T breaking,
gapped

(a)

0.4

1.
0

0.0

0.2

0.4

ρ
B
−
ρ
A

(A
−

1
m

) (b)

0.00 0.05 0.10 0.15 0.20
ε−1

0

25

50

75

E
g
(m
eV

)

(c) θ = 1.1◦

θ = 1.5◦

FIG. 1: Phase diagram of neutral bilayers as a function of
Coulomb interaction strength, characterized by inverse dielec-
tric constant ε−1, and twist angle θ. (a) Insulating states (blue
regions) appear for ever weaker interactions as the narrow-
band magic angle regime near θ ∼ 1.1◦ is approached. Above
the magic angle, the bilayer’s Dirac points are gapped when
the effective fine structure constant α∗ = e2/ε~v∗D exceeds
∼ 0.4 (solid line), where v∗D is the Dirac velocity of the twisted
bilayer,. (v∗D goes to zero as the magic angle is approached
[2].) For ε−1 & 0.05 remote band degrees of freedom play
a role in determining the phase diagram details, enabling in
particular insulating states that do not break C2T symmetry
(hatched region of the phase diagram). (b) C2T -breaking or-
der parameter ρB − ρA (i.e., sublattice polarization) and (c)
global energy gap as a function of interaction strength ε−1 for
θ = 1.1◦ (blue solid line) and 1.5◦ (red dashed line).

The valley-projected moiré flat bands in TBG occur
not singly, but in valence/conduction pairs connected
by two symmetry-protected linear Dirac band crossings.
Importantly the two Dirac points of weakly coupled bi-
layers carry the same chirality. This property implies
[14, 40, 41] that the moiré flat bands can be described
only by tight binding models with at the very least four
orbitals per spin/valley flavor per moiré unit cell. Recent
work [42] suggests that faithful descriptions of interaction
physics using generalized Hubbard models may require
the inclusion of at least eight bands per flavor, limiting



2

the motivation for approximate lattice models.

In this Letter we report on a study of the correla-
tion induced insulator states in magic angle TBG that
starts directly from the moiré band continuum model
and accounts for the long-range of the Coulomb inter-
action between electrons. Our principle results are sum-
marized in Fig. 1. In this figure the largest values of
interaction strength parameter ε−1 correspond to screen-
ing by a surrounding hexagonal boron nitride dielectric
only. In practice interactions are sample dependent and
always weakened by nearby gates. We find that gapped
states occur at neutrality when the effective fine struc-
ture constant α∗ = e2/ε~v∗D exceeds ∼ 0.4 for twist
angle θ above the magic value, and almost always for
twists that are smaller. Here v∗D is the reduced Dirac
velocity of the twisted bilayer which vanishes as the
magic angle is approached [2]. We attribute the smaller
value of the critical fine structure constant in twisted
bilayer graphene than in the corresponding single-layer
graphene (α∗ ∼ 1 [44], indicated as black dashed line in
Fig. 1(a)) calculations to the non-uniform spatial distri-
bution of flat band orbitals, which enhances interaction
effects. As in single layer graphene[43], these gapped
states break C2T symmetry and have non-zero Berry cur-
vatures, whereas the the gapless states preserve C2T sym-
metry. For n = ±p/4 6= 0, gapped states are enabled by
broken spin/valley flavor symmetries and occur over a
much narrower range of twist angles. When the inter-
action strength is sufficiently strong, gapped states can
be opened without breaking the C2T symmetry that pro-
tects band crossings when the Hamiltonian is projected
onto the strongly correlated flat bands. This property
is significant because it has implications for the occur-
rence of quantized anomalous Hall effects at band filings
n = ±1/4 and n = ±3/4.

Mean field theory.—Our theoretical approach is guided
by the experimental [4] discovery of insulating states in
magic angle TBG that are naturally explained by bro-
ken symmetries that lift the four-fold spin/valley degen-
eracy of the band Hamiltonian, and do not require broken
translational symmetry. In most cases the ground states
of insulators can be described using Hartree-Fock mean-
field theory. The difficulty in the TBG case compared
to the familiar case of atomic-scale insulators, is that the
Hamiltonian does not contain strong attractive potential
terms within each unit cell that select particular high-
weight atomic or ionic configurations. To understand
the nature of the insulating states, we must perform un-
biased Hartree-Fock calculations in the full [45] π-orbital
Hilbert space, placing no restrictions on the flavor or po-
sition dependence of the model’s four-component enve-
lope function spinors.

A typical self-consistent Hartree-Fock calculation re-
sult, for the point ε = 5 and θ = 1.1◦ marked by a red
dot in Fig. 1(a), is summarized in Fig. 2, which illus-
trates quasiparticle dispersion, topology, and C2T break-

E(meV)
Intra-layer Inter-layer

Total
Hopping Hartree Fock Hopping Hartree Fock

NI 1417 0 -44 -2636 0 -278 -1541

SCHF 2372 0 -109 -3452 0 -469 -1658

TABLE I: Total energy per moiré unit cell at neutrality in
units of meV calculated in the non-interacting (NI) and self-
consistent Hartree-Fock (SCHF) ground states for θ = 1.1◦

and ε = 5. Gapped insulating states with and without bro-
ken C2T compete closely, differing in energy by less than 1
meV per moiré cell. Note that Hartree energies do not play
an important role in selecting the broken symmetry state.
Both intralayer and interlayer energies grow with the mo-
mentum space cut-off, but the difference in energy between
non-interacting and interacting states converges.

ing order parameters, and in Table I in which the ground
state energies of the non-interacting and interacting cases
are partitioned into intralayer and interlayer tunneling
and interaction contributions. The technical details of
these calculations are described in the Supplemental Ma-
terial. All energies are expressed relative to the energy
of the non-interacting state in the absence of inter-layer
tunneling, and a neutralizing background charge den-
sity is assumed. As shown in Fig. 2, we find separate
self-consistent gapped solutions with and without C2T
symmetry breaking. The C2T symmetry broken solution
features moiré bands with well-defined non-zero Berry
curvatures and sublattice polarizations ρB − ρA, and is
lowest in energy in most regions of the phase diagram as
shown in Fig. 1(a).

In Table I we note that the ratio of the cost in intra-
layer tunneling energy, to the energy gain from inter-layer
tunneling in the non-interacting ground state is 1 : 2,
the ratio that is obtained when inter-layer tunneling is
treated as a weak perturbation. This observation is con-
sistent with the property [2] that the first magic angle in
twisted bilayer graphene is accurately predicted by per-
turbation theory. Secondly we observe that at neutral-
ity both non-interacting and interacting ground states
have almost uniform charge density, even though the flat
band wavefunctions are spatially peaked near AA po-
sitions in the moiré pattern. The absence of a Hartree
energy at neutrality is related to the moiré band Hamilto-
nian’s approximate particle-hole symmetry, and is quite
distinct from what would be obtained if the Hilbert space
were truncated to include only the lowest energy flat
bands. Finally we note that the condensation energy of
the gapped state, which we define as the difference be-
tween ground state energy and the expectation value of
the Hamiltonian in the non-interacting ground state, is
∼ 117 meV per moiré period and originates mainly from
enhanced interlayer exchange energies. At this value of
ε−1 and θ, total energy minimization including interac-
tions adjusts the ground state so as to enhance interlayer
tunneling and interlayer exchange energies at a cost in the
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FIG. 2: Properties of quasiparticles at n = 0. Only valley K
states are shown. (a) Energy dispersion of the C2T breaking
(blue) and C2T preserving (red) states at θ = 1.1◦ and ε = 5.
The dotted lines illustrate the non-interacting flat bands. The
inset specifies the high symmetry lines in the moiré BZ (mBZ)
along which the band energies have been plotted. (b) Berry
curvature for lowest conduction band (upper) and the high-
est valence band (lower) of the broken C2T -symmetry solu-
tion. Features in these plots are related to avoided crossings
between the flat conduction band and higher energy remote
conduction bands. (c) Order parameters for C2T symmetry
breaking as a function of the reciprocal lattice vector G mag-
nitude. The segments marked by vertical dashed lines group
Gs with same magnitude.

intra-layer hoping energy, and a substantial part of the
ground state rearrangement occurs in higher energy (re-
mote) valence bands. A description of interaction physics
in terms of the single-particle flat bands alone is suffi-
cient only for ε−1 . 0.04. Even in this case, however,
it is necessary to include the Hartree [46] and exchange
self-energies from the frozen negative energy sea which
lower the energies of states near the moiré BZ (mBZ) κ
and κ′ points (see Fig. 2) relative to those near γ and
therefore contributes to quasiparticle band dispersion.

Band topology, insulating states, and broken C2T
symmetry.—The moiré band model [2] captures the mi-
croscopic tight-binding model’s D6, time reversal T , and
U(1) valley symmetries. When the Hamiltonian is pro-
jected to a single valley, both T and C2 = (C6)3 are
lost because they map states between valleys. We are
left only with the combined symmetry C2T , the three-
fold rotational symmetry C3 and a two-fold rotation with
respect to the x-axis Mx. As in monolayer graphene,

the C3 symmetry guarantees Dirac points at both κ and
κ′ in the mBZ. We find that near magic angle C3 is al-
ready broken at the weakest interactions we consider and
that because of the flatness of the magic-angle bands, the
Dirac point positions rapidly move close to γ where the
bands are most dispersive. The band topology evolu-
tion with θ and ε−1 is sensitive not only to interactions,
but also to the details of the non-interacting band model
(see Supplemental Material and [48]). Unless otherwise
specified, we have taken TAA/TAB = 0.8, where TAA
and TAB are the continuum model’s intra-sublattice and
inter-sublattice hopping parameters, to account for cor-
rugation and strain effects [47]. Even though this choice
gives a gap between flat bands and remote bands in the
non-interacting limit, near the magic angle a small in-
teraction strength is sufficient to pull the highest valence
(lowest conduction) band down (up) in energy to touch
the remote bands. The band topology at ε = 5 is il-
lustrated in Fig. 2(b) by plotting Berry curvature in the
C2T broken state as a function of moiré band momen-
tum. Because of the involvement of remote bands, C2T
symmetry no longer guarantees degeneracies between the
first conduction and valence bands [14, 40]. Breaking C2T
symmetry does however lift degeneracies between flat and
remote bands, and generates corresponding Berry curva-
ture hot spots that are visible in Fig. 2(b). The difference
in condensation energy between C2T breaking and pre-
serving states is extremely small. It follows that near
magic twist angles C2T symmetry breaking is not essen-
tial for gap formation at moderate interaction strengths.

We characterize states that do break C2T symmetry by
performing a Pauli matrix expansion of mBZ averages of
the non-local Fock exchange self-energy, defining

Am
A

mBZ∑
~k

〈k+G, l′, s′|ΣF |k+G, l, s〉 =
∑
ij

∆G,ij σ
i
s′sτ

j
l′l.

(1)
where A is the system area, Am is the moiré unit cell area,
(i, j) = 0, . . . , 3 are Pauli matrix labels, (s′s) = A,B
are sublattice labels and (l′l) = t, b (top, bottom) are
layer labels. (The role of self-energy terms that are off-
diagonal in reciprocal lattice vector as C2T -breaking or-
der parameters is discussed in the Supplemental Mate-
rial.) The slow fall-off of the order parameter’s recipro-
cal lattice vector expansion in Fig. 2(c) reflects the spa-
tial scale of quasiparticle wavefunction variation within
the moiré unit cell. The largest symmetry-breaking self-
energies are proportional to σzs′s and τ0l′l, i.e. they are
layer independent mass terms that favor one sublattice
over the other. (We have sought self-consistent solutions
with large σzs′sτ

z
l′l, self-energies but find that they are

not stable.) The Berry curvatures plotted in Fig.2(b) are
large near γ, not near κ,κ′, as they would be if the same
self-energy were added to a weakly-coupled-layer band
Hamiltonian at a larger twist angle. We find that the
flat bands sometimes have non-zero Chern numbers [7],
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FIG. 3: Quasiparticle dispersion of the SCHF ground states for θ = 1.1◦ and ε = 10 at filling factors: (a) n = −3/4 and
(b) n = −1/2. The lowest conduction bands and the highest valence bands are plotted as solid lines while remote bands are
plotted as dashed lines with flavor-dependent colors. The charge gaps (shaded gold) are Eg = 2.86 meV for n = −3/4 and
Eg = 3.15 meV for n = −1/2. The flavor dependent band occupation numbers nK/K′,↑/↓ are measured from neutrality so that
0 means that the corresponding valence band is occupied and −1 means that it is empty. (c) C2T order parameter and (d)
global energy gap as a function of twist angle at n = −1/2 in a state with one flat valence band occupied for each valley. The
red (dashed) and blue (solid) lines correspond to ε = 10 and 25, respectively. The flavor polarized insulators are metastable,
i.e. the assumed gap is self-consistent, in an interaction strength dependent interval (shaded regions) on the high-twist angle
side of the magic angle.

implying that quantized anomalous Hall effects can occur
[49] when band occupations are valley-dependent.

Flavor symmetry breaking.— Because interactions nor-
mally induce gaps between conduction and valence
bands, which then remain relatively flat, states with
spin/valley flavor dependent band occupancies can be in-
sulating. For example at n = +p/4, a state with the first
conduction band occupied for p flavors and empty for the
remaining flavors is metastable if the exchange-energy
shift of the conduction band upon occupation UX exceeds
the conduction band width. A rough estimate based on
non-self-consistent Hartree-Fock calculations (see Sup-
plemental Material) yields UX ' 250meV/ε, increasing
slowly with twist angle. The flat band width, on the
other hand, increases rapidly when the magic angle is
exceeded, so that insulating states are restricted to the
immediate vicinity of the magic angle. Fig. 3 illustrates
the quasiparticle bands that emerge from a typical fully
self-consistent mean-field calculation for a broken flavor
symmetry insulator. In mean-field theory, coupling be-
tween flavors occurs only through the Hartree potential
which is absent at neutrality and attractive at AA sites in
the moiré pattern at negative band filling factors. It fol-
lows that the energies and wave functions of the Hartree-
Fock quasiparticle states of one flavor depend only weakly

on the band-fillings of the other flavors.

Discussion.— Guided by earlier work [50], we antici-
pate that there is generally an energetic preference (not
captured in continuum models) for states in which op-
posite valleys are occupied equally. Insulating states at
n = ±1/4 and ±3/4 must however break valley sym-
metry and are likely to be maximally valley polarized,
which implies quantization of the anomalous Hall effect.
It therefore follows from our calculations that quantized
anomalous Hall effects in graphene bilayers can occur
at quarter band fillings, but that it may not either be-
cause C2T symmetry is not broken or because the Chern
number happens to equal zero [7]. Indeed there is evi-
dence [7] experimentally that some insulating states at
the quarters are Chern insulators and some are not. Fur-
ther experimental work that maps out how this behavior
depends on twist angles and distances to gates will be
necessary to make a detailed comparison with mean-filed
theory. The important role of thermal and quantum fluc-
tuations of the collective fields present in the insulating
states will be discussed elsewhere.
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Note added.—Three independent related papers[51–53]
which appeared after submission of our work report re-
lated results from mean-field theory and are complimen-
tary to this paper.
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Brillouin-zone in reciprocal lattice vectors, truncating at
convergence.

[46] F. Guinea and N. R. Walet, Proc. Natl. Acad. Sci. U.S.A.
115, 13174 (2018).

[47] S. Carr, S. Fang, Z. Zhu, and E. Kaxiras, Phys. Rev.
Research 1, 013001 (2019).

[48] M. Xie and A. H. MacDonald, unpublished.
[49] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T.

Senthil, Phys. Rev. B 99, 075127 (2019).
[50] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Phys.

Rev. B 89, 205414 (2014).
[51] S. Liu, E. Khalaf, J. Y. Lee, A. Vishwanath,

arXiv:1905.07409.
[52] N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A. Vish-



6

wanath, and M. P. Zaletel, arXiv: 1911.02045.
[53] J. Liu and X. Dai, arXiv:1911.03760.


	Acknowledgments
	References

