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Time crystals form when arbitrary physical states of a periodically driven system spontaneously
break discrete time-translation symmetry. We introduce one-dimensional time-crystalline topo-
logical superconductors, for which time-translation symmetry breaking and topological physics
intertwine—yielding anomalous Floquet Majorana modes that are not possible in free-fermion sys-
tems. Such a phase exhibits a bulk magnetization that returns to its original form after two drive
periods, together with Majorana end modes that recover their initial form only after four drive
periods. We propose experimental implementations and detection schemes for this new state.

Introduction. Periodically driven quantum systems
evade certain constraints imposed in equilibrium. For
instance, ‘time crystals’ that spontaneously break time-
translation symmetry in the sense envisioned in Refs. 1
and 2 cannot arise in equilibrium [3], yet can emerge with
periodic driving. In periodically driven time crystals any
physical (i.e., non-cat) state evolves with a subharmonic
of the drive frequency [4–6]. The canonical realization
consists of disordered Ising spins that collectively flip af-
ter each drive period, thereby requiring two periods to
recover their initial state. Experiments have detected
signatures of time crystallinity both in driven cold atoms
[7, 8] and solid-state spin systems [9–11].

As a second, deeply related example, consider a one-
dimensional (1D) free-fermion topological superconduc-
tor hosting Majorana end modes [12], each described by
a Hermitian operator γ. If γ adds energy E then γ†

adds −E, while Hermiticity requires that these be equiv-
alent. In equilibrium the unique solution is E = 0—
corresponding to the well-studied Majorana zero modes.
Periodically driving with frequency Ω additionally per-
mits ‘Floquet Majorana modes’ carrying E = Ω/2 since
energy is then only conserved mod Ω [13]. Floquet Ma-
jorana modes have been proposed to facilitate more effi-
cient quantum information processing compared to equi-
librium systems [14–16]. Moreover, they encode a topo-
logical flavor of time-translation symmetry breaking in
that Floquet Majorana operators change sign each drive
cycle, thus also requiring two periods to recover their ini-
tial form.

We merge the phenomena above by exploring peri-
odically driven 1D topological superconductors gener-
ated upon coupling Cooper-paired electrons to doubled-
periodicity time-crystalline Ising spins. Such ‘time-
crystalline topological superconductors’ intertwine bulk
time-translation symmetry breaking and topological
physics—yielding anomalous quadrupled-periodicity Flo-
quet Majorana modes that categorically can not arise in
free-fermion platforms. We propose implementation via
quantum-dot arrays (see Fig. 1) reminiscent of setups uti-

FIG. 1. Proximitized quantum-dot array coupled to Ising
spins. The Ising spins polarize the dot electrons—effectively
producing a system of spinless fermions cj . In any Ising con-
figuration, the fermions can realize topological superconduc-
tivity with unpaired Majorana zero modes γ1,2 that intertwine
with the adjacent spins.

lized in Refs. 17–19 for engineering equilibrium Majorana
zero modes. We derive and analyze an exactly solvable,
physically intuitive model for time-crystalline topolog-
ical superconductivity and show that probing junctions
between time-crystalline and static topological supercon-
ductors reveals the Floquet Majorana modes’ quadrupled
periodicity.

Model and Setup. Time-crystalline topological su-
perconductors closely relate to equilibrium topological
superconductors that spontaneously violate electronic
time-reversal symmetry T , which importantly satisfies
T 2 = −1. We thus begin by modeling the latter. Our
setup, sketched in Fig. 1, consists of a superconductor
coupled to a chain of quantum dots indexed by sites j,
each hosting one active spinful level described by opera-
tors fjσ (σ =↑, ↓ denotes spin , which we implicitly sum
over whenever suppressed); we assume that charging en-
ergy is quenched by coupling to the superconductor and
can thus be neglected. A chain of Ising spins described by
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Pauli matrices mz
j resides proximate to the quantum-dot

array. We model the setup with a T -symmetric Hamil-
tonian H = H0 +Hf , where

H0 =
∑
j

(−Jmz
jm

z
j+1 −Kmz

jf
†
j σ

zfj), (1)

Hf =
∑
j

[−µf†j fj − t(f†j fj+1 +H.c.)

+ α(if†j σ
xfj+1 +H.c.) + ∆(fj↑fj↓ +H.c.)]. (2)

In H0, J > 0 ferromagnetically couples neighboring Ising
spins and K > 0 couples the Ising and dot spins. Terms
in Hf describe the chemical potential (µ), hopping (t),
spin-orbit coupling (α), and proximity-induced pairing
(∆) for the quantum-dot electrons.

Suppose that the K term dominates and energetically
enforces alignment of each electron spin with the nearest
Ising spin. Only one of the two spinful levels in each
dot remains active at low energies—effectively creating a
system of spinless fermions described by operators

cj =
1

2

[
(1 +mz

j )fj↑ + (1−mz
j )fj↓

]
, (3)

as Fig. 1 illustrates. Time-reversal T sends mz
j → −mz

j

and cj → mz
j cj , thus satisfying time-reversal symmetry.

This intertwinement between spinless fermions and Ising
spins is unavoidable; without it, cj has no way of ac-
quiring the required minus sign upon two applications of
T .

In the Supplemental Material we project H onto the
spinless-fermion subspace by integrating out high-energy
fermionic modes, yielding an effective Hamiltonian

Heff =
∑
j

[−Jmz
jm

z
j+1 − µ′c†jcj

+ (t′mzj ,mzj+1
c†jcj+1 + ∆′mzj ,mzj+1

cjcj+1 +H.c.)] (4)

[20]. Here µ′ = −(K + µ) is a renormalized chem-
ical potential, while t′mzj ,mzj+1

= a + a∗mz
jm

z
j+1 and

∆′mzj ,mzj+1
= bmz

j − b∗mz
j+1 denote Ising-spin-dependent

effective hopping and p-wave pairing amplitudes, with
a = (−t+ iα)/2 and b = (−t+ iα)∆/(K − µ). The real
part of a sets the hopping strength between sites with
aligned Ising spins, which is directly inherited from spin-
conserving tunneling in Eq. (2); the imaginary part simi-
larly fixes the hopping when Ising spins anti-align, which
is instead mediated by spin-orbit coupling α. Pairing
in Heff follows from second-order processes that involve
virtual excitations out of the spinless-fermion subspace—
hence the K−µ energy denominator in b. Depending on
the Ising configuration, either spin-conserving hopping or
spin-orbit coupling virtually creates a doubly-occupied
site of f fermions that then Cooper pair via the original
s-wave ∆ term, effectively mediating p-wave pairing of
spinless fermions.

Phase Diagram. Equation (4) describes a strongly
interacting system of Ising spins and fermions. Neverthe-
less, for any given Ising configuration the model reduces
to free fermions. Consider first uniformly polarized all-
up or all-down Ising spins. Here Eq. (4) maps to the
familiar Kitaev chain [12] with uniform hopping strength
2|a| cosφa and pairing ±2i|b| sinφb, where a = |a|eiφa
and b = |b|eiφb . (Our derivation above yielded φa = φb,
though it will be useful to now keep these phases in-
dependent.) Accordingly, the chain hosts edge Majorana
zero modes provided the chemical potential intersects the
band and pairing is finite, i.e., for |µ′| < 4|a|| cosφa| and
sinφb 6= 0 as sketched in Fig. 2(a).

To examine the fermionic ground state with random
Ising spins—which is our main interest—we compute the
correlation length ξ using the transfer-matrix technique;
see, e.g, Ref. 21 and the Supplemental Material. This
method allows us to map out phase boundaries by nu-
merically searching for diverging ξ as we vary φa,b; for
our purposes a regular 400×400 grid of φa and φb val-
ues in the interval [−π/2, π/2] is sufficient. [Exploiting
ξ(φa, φb) = ξ(−φa,−φb) halves the number of simula-
tions]. Figure 2(b) illustrates representative results ob-
tained for µ′ = |b| = |a|/4 and N = 106 sites. The data
points indicate local maxima where ξ is typically of order
102 or larger, while it is of order unity elsewhere. We ex-
pect these peaks to represent true divergences in ξ when
φa or φb are tuned continuously in the thermodynamic
limit. Topological regions are easily identified via exact
diagonalization on smaller systems and confirming the
presence of edge Majorana zero modes. In the Supple-
mental Material we analytically capture the topological
phase for a restricted window of φa,b via the Born ap-
proximation.

For our quantum-dot setup, we expect φa = φb [red
line in Fig. 2(b)] and also |a| � |b| since p-wave pair-
ing encoded in b appears at second order in perturbation
theory. Starting from the topological phase in this phys-
ical regime, Fig. 2(b) strongly suggests that we can de-
form parameters to φa = π/4 and φb = −π/4, |a| = |b|,
and µ′ = 0 without encountering a divergent ξ. (See
the Supplemental Material for additional evidence.) This
special point corresponds to the model’s zero-correlation-
length limit. Here it is convenient to decompose the spin-
less fermions in terms of Majorana operators ηA,Bj via
cj = e−i

π
4m

z
j (ηBj + iηAj), whereupon Eq. (4) becomes

H ′eff =
∑
j

(−Jmz
jm

z
j+1 − iκsmzj ,mzj+1

ηAjηBj+1) (5)

with smi,mj = (1 − mi + mj + mimj)/2 = ±1 and
κ = 4

√
2|a|. For any choice of mz

j ’s the Majorana op-
erators dimerize nontrivially as shown in Fig. 1, yielding
Majorana zero modes

γ1 ≡ ηB1 = ei
π
4m

z
1c1 +H.c.

γ2 ≡ ηAN = −ieiπ4mzN cN +H.c. (6)
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FIG. 2. Phase diagram for Eq. (4) assuming (a) fully polar-
ized and (b) random Ising spins. In (a) a nonzero chemical
potential µ′ = |a| generates the trivial phase, and the system
is gapless along the thick black lines. Data in (b) were gener-
ated from transfer-matrix simulations at µ′ = |b| = |a|/4 with
106 sites. Data points indicate sharp peaks in the localization
length, as expected at a topological phase transition. The red
diagonal line φa = φb is relevant for the physical quantum-
dot setup from Fig. 1. As the dashed arrow illustrates, the
topological phase along this line can be deformed to the zero-
correlation-length limit with φa = π/4, φb = −π/4 (and also
|a| = |b|, µ′ = 0) without crossing a phase boundary. Increas-
ing the magnitude of µ′ tends to thicken the trivial regions,
while altering the relative magnitudes of |a| and |b| shifts the
boundaries separating the topological and trivial phases.

at the leftmost and rightmost sites. Notice the spin-
fermion intertwinement inherent in the zero modes,
which consequently evolve under T via

γ1 → mz
1γ1, γ2 → −mz

Nγ2, (7)

again consistent with T 2 = −1. All Hamiltonian eigen-
states are at least fourfold degenerate in this limit: one
factor of two arises because T flips all Ising spins, while
the other reflects topological degeneracy encoded in the
Majorana zero modes. The topological degeneracy of
the fermionic ground states given a static Ising config-
uration persists even away from the special limit exam-
ined above, due to the finite gap for fermionic excita-
tions. Moreover, the Supplemental Material shows that
Eq. (7) holds even when the zero-mode wavefunctions
extend over many sites.

Adiabatic cycle. Next we generalize Eq. (1) to

H ′0 =
∑
j

[−J(n̂·mj)(n̂·mj+1)−K(n̂·mj)f
†
j n̂·σfj ], (8)

where m,σ denote vectors of Pauli matrices and the unit
vector n̂ ≡ cos θẑ + sin θŷ determines the easy axis for
the Ising spins. At either θ = 0 or π, H ′0 reduces to
Eq. (1). Suppose that we again deform to the zero-
correlation-length limit (which is possible for any θ) and
then implement the following cycle: (i) Start with an ar-
bitrary Ising spin configuration at θ = 0, (ii) initialize
the fermions into one of the topological-superconductor

e−iTHdiseff

kick

e−iTHdiseff

kick

e−iTHdiseff

kick

e−iTHdiseff

kick

mz
1γ1 mz

Nγ2

Time-crystalline topo SC Static topo SC

−mz
1γ1 −mz

Nγ2

λ
γ1 γ2 γ3 γ4

γ3

−γ1 −γ2 γ3

γ3

γ3γ1 γ2

t

0
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2T

3T

4T

e−iTHdiseff
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5T

γ4

γ4

γ4

γ4

FIG. 3. Time evolution for the time-crystalline topological
superconductor generated by Eq. (10) at ε = 0. Each period T
globally flips all Ising spins, yielding doubled-periodicity bulk
response, whereas the Floquet Majorana modes γ1,2 exhibit
quadrupled-periodicity response that can be probed in the
junction with the static topological superconductor on the
right. The inner Majorana modes γ2,3 hybridize with coupling
strength λ. Since γ3 is static while γ2 evolves nontrivially
after each period T , the junction’s energy inherits the latter’s
quadrupled periodicity.

ground states, and finally (iii) adiabatically rotate the
easy axis by winding θ from 0 to π.

Although the Hamiltonian returns to its original form,
the wavefunctions do not. Rather, the cycle slowly ro-
tates all Ising spins by π, while the fermions follow their
instantaneous minimum-energy configuration given the
adiabaticity. The initial ground state thereby transforms
into its time-reversed counterpart. One rotation sends
mz
j → −mz

j , fj → ei
π
2 σ

x

fj , and hence cj → icj . Ma-
jorana zero modes thus transform as γ1 → mz

1γ1 and
γ2 → mz

Nγ2, similar to the action of T . Interestingly,
two cycles return the Ising spins to their original form
whereas four cycles are required to recover the initial
zero-mode operators, e.g.,

γ1 → mz
1γ1 → −γ1 → −mz

1γ1 → γ1. (9)

Time-crystalline topological superconductivity
and detection. We now promote the adiabatic ground-
state phenomenon described above to a dynamic phe-
nomenon applicable to arbitrary physical states. To this
end we apply a variation of the preceding cycle peri-
odically with period T , thus generating time-crystalline
topological superconductivity. We specifically consider a
binary drive such that the Floquet operator that evolves
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the system over a single period reads

UT = e−i(π/2−ε)
∑
j(m

x
j+c†jcj)e−iTH

dis
eff . (10)

The right exponential evolves the system with respect to
a disordered, static Hamiltonian Hdis

eff that is the same
as Eq. (4) but with J, a, b replaced with random site-
dependent couplings Jj , aj , bj . We neglect randomness
in the phases of aj , bj and treat Jj , aj , bj as indepen-
dent random variables with magnitudes drawn from uni-
form distributions [J̄ − δJ, J̄ + δJ ], [ā − δa, ā + δa], [b̄ −
δb, b̄ + δb]. Disorder crucially introduces many-body lo-
calization (MBL) into the dynamics and prevents heating
to infinite temperatures [22–26]. The left exponential in
Eq. (10) performs an instantaneous ‘kick’ that (at least
approximately) flips the Ising spins via a transverse mag-
netic field pulse and applies a potential to the spinless
fermions—thereby mimicking evolution from our adia-
batic cycle without the adiabaticity requirement.

The dynamics is analytically tractable at ε = 0 and
when Hdis

eff reduces to Eq. (5) with random couplings
Jj , κj . Starting from any Ising configuration, the ‘per-
fect’ kick in UT sends mz

j → −mz
j and thus flips all spins,

signifying period-doubling time crystallinity in the spin
sector. In the fermionic sector, γ1,2 in Eq. (6) continue to
commute with Hdis

eff despite the randomness. The kick,
however, nontrivially transforms the Majorana edge op-
erators so that UT γ1U

†
T = mz

1γ1 and UT γ2U
†
T = mz

Nγ2.
Precisely as illustrated in Eq. (9), γ1,2 therefore require
four drive periods to recover their initial form, i.e., they
form the hallmark quadrupled-periodicity Floquet Ma-
jorana modes. Shaded regions of Fig. 3 summarize the
evolution.

Quadrupled periodicity can be experimentally probed
in junctions between time-crystalline and static topo-
logical superconductors as in the right side of Fig. 3,
wherein γ3 and γ4 denote time-independent Majorana
zero modes. Electron tunneling across the junction cou-
ples γ2 with γ3, producing a Hamiltonian term H23 =
iλγ2γ3 for some λ that may depend on the adjacent
Ising spins. Consequently, the junction’s energy den-
sity (among other local properties) directly manifests the
quadrupled-periodicity built into the anomalous Floquet
Majorana mode γ2.

Rigidity against ‘imperfect’ drives is a crucial feature
of time-crystalline phases [4–6, 27]. Here, such imperfec-
tion arises from taking ε 6= 0 and Hdis

eff away from the
zero-correlation-length limit, which spoils exact solvabil-
ity and prompts us to turn to numerics.

Numerics. We employ time-evolving block decima-
tion (TEBD), using a maximum bond dimension of χ =
50, on a 20-site system with random Ising spins and pa-
rameters appropriate for our quantum-dot setup: φa =
φb = π/8, b̄ = ā/2, J̄ = ā/4, µ′ = 0, δa = δb = δJ = ā/8.
Our simulations incorporate a decoupled, static zero-
energy fermion c0 that functions similarly to the static

topological superconductor in Fig. 3. We initialize into
a state that entangles the static fermion with the rest
of the system. We then simulate the Floquet operator
in Eq. (10) with āT = 2 and āT = 0.2, and with the
kick shifted away from commensurability by ε = 0.2 [28].
Despite the rather small system size, in both cases the
bond dimension quickly saturated, and the truncation er-
ror was relatively coarse. To check robustness of our nu-
merics we repeated the computations for maximum bond
dimension χ = 25, and the results agreed with those at
χ = 50.

Over a run of 60 Floquet evolutions and 150 disor-
der averages, we measure the Ising spin 〈mz

j=10〉 in the
middle of the system as well as 〈c†0c1〉, where c1 corre-
sponds to the leftmost quantum dot. The former probes
bulk time crystallinity while the latter probes the Floquet
Majorana modes. Figure 4 plots the Fourier transform of
both quantities as a function of frequency ω normalized
by Ω = 2π/T . For āT = 2 the data show the rigid-
ity characteristic of a time crystal: despite the imperfect
drive, the bulk magnetization and edge fermion bilinear
respectively remain peaked at ω = Ω/2 and ω = 3Ω/4 (as
expected for doubled-periodicity Ising spins and quadru-
pled periodicity Floquet Majorana modes). By contrast,
in our āT = 0.2 simulations both peaks clearly shift
due to non-zero ε, indicating an absence of rigid time-
crystallinity for this case. We also ran exact numerics on
a 7-site system and measured the level-spacing statistics
of the UT eigenvalues. At āT = 2 the mean level spacing
was approximately 0.39, close to the Poisson value 0.386
expected for MBL [29].

Discussion. The admixture of symmetry breaking
and topology is known to generate new physics in static
systems; examples include 8π-periodic Josephson effects
[30, 31] and enrichment of Majorana braiding and fu-
sion [32]. Our work establishes that driven systems can
be similarly enriched by ‘decorating’ topological phases
with spontaneous time-translation symmetry breaking.
We specifically showed that 1D time-crystalline topologi-
cal superconductors engineered from quantum-dot arrays
host novel Floquet Majorana modes that display anoma-
lously long periodicity not possible with free fermions.
Exotic states of this type are not captured by the coho-
mology classification of interacting topological Floquet
phases [33–37]. Our work opens up the possibility of har-
nessing time crystals to enrich other “designer” phases of
matter. One could envision promoting spinless fermions
to spinful fermions coupled to magnetic degrees of free-
dom in systems such as driven spinless 2D p + ip su-
perconductors [38–40]. Subtleties regarding MBL in two
dimensions can be avoided by focusing on pre-thermal
regimes, possibly leading to new higher-dimensional adi-
abatic cycles and time-crystalline topological phases.
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10 represents an Ising spin at
the center of the chain, c0 is an auxiliary zero-energy static
fermion that enables probing the Floquet Majorana mode pe-
riodicity, and c1 is the fermion at the left end of the quantum-
dot chain. For initialization we use random Ising configura-
tions and random fermionic states that entangle c0 with the
rest of the system. Runs were repeated 150 times for disorder
averaging with maximum bond dimension χ = 50; similar re-
sults were obtained with χ = 25. For āT = 2 sharp peaks per-
sist at Ω/2 and 3Ω/4—despite ‘imperfect’ driving generated
by ε 6= 0—indicating ‘rigid’ doubled-periodicity Ising spins
and quadrupled-periodicity Floquet Majorana modes charac-
teristic of time-crystalline topological superconductivity. For
āT = 0.2, the imperfect drive pushes the peak frequencies
away from these quantized values, indicating a loss of rigid
time crystallinity.
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