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In the two-component Fermi gas with a contact interaction, a pseudogap regime can exist at tem-
peratures between the superfluid critical temperature Tc and a temperature T ∗ > Tc. This regime is
characterized by pairing correlations without superfluidity. However, in the unitary limit of infinite
scattering length, the existence of this regime is still debated. To help address this, we have applied
finite-temperature auxiliary-field quantum Monte Carlo (AFMC) to study the thermodynamics of
the superfluid phase transition and signatures of the pseudogap in the spin-balanced homogeneous
unitary Fermi gas. We present results at finite filling factor ν ' 0.06 for the condensate fraction,
an energy-staggering pairing gap, the spin susceptibility, and the heat capacity, and compare them
to experimental data when available. In contrast to previous AFMC simulations, our model space
consists of the complete first Brillouin zone of the lattice, and our calculations are performed in the
canonical ensemble of fixed particle number. The canonical ensemble AFMC framework enables the
calculation of a model-independent gap, providing direct information on pairing correlations without
the need for numerical analytic continuation. We use finite-size scaling to estimate Tc at the corre-
sponding filling factor. We find that the energy-staggering pairing gap vanishes above Tc, showing
no pseudogap effects, and that the spin susceptibility shows a substantially reduced signature of a
spin gap compared to previously reported AFMC simulations.

Introduction.— The unitary Fermi gas (UFG) is the
infinite-scattering-length limit of a system of spin-1/2
fermions with a zero-range interaction. This system
is relevant to a variety of physical systems, including
neutron stars, strongly correlated QCD matter [1] and
high-Tc superconductors [2]. The homogenous UFG is a
strongly correlated quantum many-body system charac-
terized by a single energy scale and is of broad interest
as a testing ground for many-body theories.

The UFG has been realized experimentally using ul-
tracold dilute gases of 6Li and 40K; see, e.g., Refs. [3, 4].
These experiments have measured various properties of
the UFG, including the thermal energy, pressure, heat ca-
pacity, compressibility, and spectral function [5–9]. The
UFG exhibits a superfluid phase transition at a critical
temperature measured as Tc = 0.167(13)TF [5] where TF
is the Fermi temperature.

The nature of pairing correlations in the UFG above Tc
remains incompletely understood. In particular, a pseu-
dogap regime, in which pairing correlations exist even
though a superfluid condensate is not present, was pro-
posed to exist above Tc. Such a regime exists in the BEC
limit, where particles pair to form bound dimers at a
temperature T ∗ and condense at the critical temperature
Tc < T ∗. However, in the UFG, it is still debated whether
Tc and the temperature scale T ∗ for pairing should co-
incide or differ, and if they differ, what the properties of
the pseudogap regime Tc < T < T ∗ are.

A number of experimental works claimed to have ob-
served signatures of a pseudogap in the UFG [9, 10], while
others have seen no signatures of a pseudogap [5, 6, 11,
12]. Similar differences emerged in theoretical studies,
with some showing a signature of a pseudogap [10, 13–
22], and others not [23, 24]. For a recent review, see
Ref. [25]. A wide variety of theoretical methods were

applied to study the superfluid phase transition of the
UFG [26]. While these methods provided important in-
sight into the physics of the UFG, ab initio simulations
can provide the most accurate results [27–31].

Here we apply finite-temperature auxiliary-field quan-
tum Monte Carlo (AFMC) on a lattice to study the
thermodynamic properties of the homogeneous UFG.
Our calculations differ from previous AFMC calcula-
tions [13, 15, 32] in that (i) we do not use a spherical
cutoff in the single-particle momentum space, but include
the complete first Brillouin zone, leading to qualitatively
different results, (ii) we use the canonical ensemble of
fixed particle number, allowing the direct computation
of a model-independent pairing gap from the staggering
of energy in particle number without the need for numer-
ically difficult analytic continuation, (iii) we extrapolate
to zero imaginary time step, and (iv) we calculate the
heat capacity, which is challenging to compute in quan-
tum Monte Carlo simulations. We also present results
for the condensate fraction and static spin susceptibility.

Our calculations are done for a small but finite filling
factor of ν ' 0.06. We use finite-size scaling of the con-
densate fraction to determine a critical temperature of
Tc ' 0.130(15)TF at this finite density. We find that the
model-independent pairing gap vanishes at temperatures
larger than Tc, and thus does not show pseudogap ef-
fects, in contrast to the conclusions of Refs. [13, 32]. The
spin susceptibility shows a moderate suppression above
Tc and below a spin-gap temperature of T ∗ . 0.17TF , in
contrast to the value of T ∗ ' 0.25TF found in Ref. [15].

Extensive supplemental material accompanies this ar-
ticle, in which we discuss important technical details [33].

Lattice formulation and Hamiltonian.— We considerN
spin-1/2 fermions that interact via a contact interaction
V = V0δ(r − r′) within a spatial volume with periodic
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boundary conditions. The volume is discretized into a
lattice with an odd number NL of points in each dimen-
sion, each lattice point centered within a cube of side
length δx. The lattice Hamiltonian is

Ĥ =
∑
k,s

εkâ
†
k,sâk,s + g

∑
x

n̂x,↑n̂x,↓ , (1)

where â†k,s and âk,s are creation and annihilation opera-
tors for fermions with wavevector k and spin projection
s = ±1/2, and the single-particle dispersion relation is

εk = ~2k
2
/2m. The coupling constant is g = V0/(δx)3

and n̂x,s = ψ̂†x,sψ̂x,s, where ψ̂†x,s, ψ̂x,s obey anticommu-

tation relations {ψ̂†x,s, ψ̂x′,s′} = δx,x′δs,s′ .
Our single-particle model space consists of all single-

particle states with spin projection s = ±1/2 and mo-
mentum ~k within the complete first Brillouin zone of
the lattice, described by a cube |ki| ≤ kc (i = x, y, z)
with kc = π/δx. The thermodynamic limit of the UFG is
recovered in the limits of zero filling factor (ν = N/N3

L →
0) and large number of fermions (N →∞).

We choose V0 to reproduce the scattering length a [43]

1

V0
=

m

4π~2a
−
∫
B

d3k

(2π)32εk
, (2)

which is derived by solving the Lippmann-Schwinger
equation. We use the complete first Brillouin zone B
when calculating the integral in (2). Solving the scat-
tering problem numerically on the lattice, we find that
Eq. (2) is very accurate even for finite lattices: on the
93 lattice it yields a−1 = 0.006 (δx)−1 and an effective
range of re = 0.34 δx [33], in close agreement with its
value re = 0.337 δx in the limit of large lattices [43].

Finite-temperature AFMC.— The AFMC method (for
a recent review, see Ref. [44]) is based on the Hubbard-
Stratonovich (HS) transformation [45, 46], which ex-

presses the thermal propagator e−βĤ (β = 1/kBT is the
inverse temperature T with Boltzmann constant kB) as
a path integral over external auxiliary fields.

Dividing the imaginary time β intoNτ imaginary times
of length ∆β, we use a symmetric Trotter decomposition

e−βĤ = [e−∆βĤ0/2e−∆βV̂ e−∆βĤ0/2]Nτ +O((∆β)2) , (3)

where Ĥ0 and V̂ are, respectively, the kinetic energy
and interaction terms of the Hamiltonian Ĥ in Eq. (1).
Rewriting the interaction as V̂ = g

∑
x(n̂2

x− n̂x)/2 where
n̂x = n̂x,↑+n̂x,↓, and expressing exp

(
−∆βgn̂2

x/2
)

at each
of the N3

L lattice points x and Nτ time slices τn = n∆β
(n = 1, 2, . . . , Nτ ) as a Gaussian integral over an auxil-
iary field σx(τn), the propagator becomes

e−βĤ =

∫
D[σ]GσÛσ +O((∆β)2) . (4)

Here D[σ] =
∏

x,n

[
dσx(τn)

√
∆β|g|/2π

]
is the integra-

tion measure, Gσ = e−
1
2 |g|∆β

∑
x,n σ

2
x(τn), and Ûσ =

∏
n e
−∆βĤ0/2e−∆βĥσ(τn)e−∆βĤ0/2 (a time-ordered prod-

uct) with ĥσ(τn) = g
∑

x σx(τn)n̂x−gN̂/2 is the propaga-
tor of non-interacting fermions in time-dependent fields
σx(τ). We use a fast Fourier transform [13, 15, 32] to
efficiently change basis between coordinate and momen-
tum space in order to implement the potential and the
quadratic single-particle dispersion relation, respectively.
We discretize the integral over each of the σ fields using
a three-point Gaussian quadrature [47].

The thermal expectation value of an observable Ô is

〈Ô〉 =
Tr(Ôe−βĤ)

Tr(e−βĤ)
=

∫
D[σ]〈Ô〉σWσΦσ∫
D[σ]WσΦσ

, (5)

where Wσ = Gσ|Tr(Ûσ)|, Φσ = Tr(Ûσ)/|Tr(Ûσ)| is the
Monte Carlo sign, and 〈Ô〉σ = Tr(ÔÛσ)/Tr(Ûσ) is the
expectation of Ô with respect to a field configuration
σ. In AFMC, we sample uncorrelated field configura-
tions according to the positive-definite weight Wσ and
use them to estimate 〈Ô〉 and its statistical fluctuation.

We project onto fixed particle number Ns for each spin
s using the discrete Fourier transform

P̂Ns =
e−βµNs

M

M∑
m=1

e−iϕmNse(βµ+iϕm)N̂s , (6)

where ϕm = 2πm
M and M = N3

L. The chemical po-
tential µ in (6), chosen to give approximately an aver-
age Ns, ensures the numerical stability of the Fourier
sum. The traces in (5) are computed as canonical traces,
TrN↑,N↓X̂ = Tr(P̂N↑ P̂N↓X̂), which are sums of grand-
canonical traces using Eq. (6). These grand-canonical
traces can be computed using the matrix Uσ that repre-
sents Ûσ in the single-particle space, e.g.,

TrGC[e(βµ+iϕm)N̂ Ûσ] = det[11 + e(βµ+iϕm)Uσ] . (7)

We use the diagonalization method of Refs. [48, 49] to
compute more efficiently the Fourier sums in the number
projection. We also use algorithmic improvements we
developed for finite-temperature AFMC calculations of
dilute fermionic systems [33, 50] that have enabled our
large-lattice simulations.

Results.— We performed AFMC simulations for N =
20, 40, 80 and 130 particles on lattices of size 73, 93, 113

and 133, respectively, keeping the filling factor low and
constant at ν ≡ N/N3

L ' 0.06. The ratio of the effective
range re ≈ 0.337 δx [43] to the Fermi wavelength is then
kFre ' 0.41. We use multiple ∆β values for each β and
a quadratic fit to extrapolate the observables to ∆β =
0. For each run, we collect typically between 3,000 and
30,000 thermalized and uncorrelated samples [33].

(i) Condensate fraction: The existence of off-
diagonal long-range order in the two-body density ma-
trix 〈ψ̂†k1,↑ψ̂

†
k2,↓ψ̂k3,↓ψ̂k4,↑〉 is equivalent to this matrix

having a large eigenvalue which scales with the sys-
tem size [51]. We calculated the condensate fraction
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n from the largest eigenvalue λ, which satisfies λ ≤
N(M −N/2 + 1)/(2M) ≤ N/2, using the definition

n = 〈λ〉/[N(M −N/2 + 1)/(2M)] , (8)

where M = N3
L is the number of lattice points. In

Fig. 1(a), we show the AFMC condensate fraction for 20,
40, 80, and 130 particles (solid symbols). We compare
with the experimental values of Ref. [5] (open circles) and
the simulations of Ref. [32] (open squares); for the latter
we show the results of the largest lattice reported, 103.

To obtain the thermodynamic and continuum limits,
one must extrapolate to infinite particle number and zero
filling factor ν → 0 or equivalently kF re → 0 [27, 56,
57]. To determine Tc in the thermodynamic limit at fixed
filling factor, we performed a finite-size scaling analysis
using the condensate fraction (see Fig. 5 of [33]). We find
Tc ' 0.130(15)TF for the filling factor of ν ' 0.06, shown
by the vertical band in Fig. 1. The Fermi temperature
is defined by TF = εF /kB where εF = (~2/2m)(3π2ρ)2/3

is the Fermi energy and ρ = ν/(δx)3 is the density. The
lower value of Tc at finite filling factor as compared with
the experimental value of Ref. [5] is consistent with the
findings of Ref. [58] that the finite effective range of the
interaction suppresses the attractive pairing correlations.
The continuum limit requires further studies with large-
lattice simulations. We leave this to future studies.

(ii) Energy-staggering pairing gap: Using the canoni-
cal ensemble, we calculated a model-independent thermal
energy-staggering pairing gap

∆E=[2E(N↑, N↓−1)−E(N↑, N↓)−E(N↑−1, N↓−1)]/2 .
(9)

Here E(N↑, N↓) is the thermal energy for a system with
N↑ spin-up particles and N↓ spin-down particles. In
calculating (9), we used a particle-number reprojection
method [48, 59]. This gap does not require a numerical
analytic continuation and provides direct information on
pairing correlations. At zero temperature, the energy-
staggering pairing gap of the UFG was first studied using
quantum Monte Carlo in Ref. [60].

The pseudogap scenario suggests that pairing correla-
tions appear below a temperature scale T ∗ > Tc. Such
correlations can have various signatures, including a de-
pression in the single-particle density of states, a gap
in the single-particle excitation spectrum, and a sup-
pression of the spin susceptibility referred to as “spin-
gap” [25]. If pair formation is energetically favorable, the
energy-staggering gap ∆E should be nonzero. However,
as shown in Fig. 1(b), ∆E , which is largely converged on
the 133 lattice near Tc, vanishes above Tc ' 0.130(15)TF
and does not exhibit a pseudogap signature.

A pairing gap of ' 0.35 – 0.5 εF was reported at
T/TF = 0.15 [13, 14] (which is the estimated critical
temperature of Ref. [32]) by fitting the AFMC spectral
function to a BCS-like dispersion. Those calculations
are shown by the open squares in Fig. 1(b). It is unclear
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FIG. 1. (a) AFMC condensate fraction n (solid symbols) com-
pared with experiment [5] (open circles) and previous AFMC
results [32] (open squares). (b) AFMC energy-staggering pair-
ing gap compared with previous AFMC results [13] (open
squares) and the low-temperature experiments of Ref. [52]
(open up triangle) and Ref. [8] (open down triangle). We
also compare with the T = 0 quantum Monte Carlo result
of Ref. [53](open diamond). (c) AFMC spin susceptibility
compared with the Luttinger-Ward theory [24] (solid line),
the previous AFMC results of Ref. [15] (open squares), the
t-matrix results of Ref. [20] (dotted line), the extended T -
matrix result of Refs. [21, 54] (dashed line), and the self-
consistent NSR results of Ref. [55] (dashed-dotted line). The
vertical band is our estimate for Tc ' 0.130(15)TF .

whether the gap computed from the spectral function
and the gap computed from the energy staggering should
agree for the UFG; it would be interesting to perform cal-
culations of these quantities within the same framework.
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(iii) Spin susceptibility: In the presence of pairing
correlations, spin-flip excitations require the breaking
of pairs, causing a suppression of the spin susceptibil-
ity [19, 61, 62]. The spin susceptibility χs is given by

χs =
β

V
〈(N̂↑ − N̂↓)2〉 , (10)

where the expectation value on the r.h.s. of (10) is calcu-
lated for the spin-balanced system 〈N̂↑〉 = 〈N̂↓〉. We cal-
culated χs in AFMC using only one particle-number pro-
jection onto the total number of particles N = N↑ +N↓.
In Fig. 1(c) we show our results (solid symbols) for
χs in units of the T = 0 free Fermi gas susceptibility
χ0 = 3ρ/2εF . We also compare with the Luttinger-Ward
theory of Ref. [24] and the 123 lattice AFMC results of
Ref. [15] (open squares), the t-matrix results of Ref. [20],
the extended T -matrix results of Refs. [21, 54], and the
Nozières and Schmitt-Rink (NSR) results of Ref. [55].

Several calculations found strong suppression of the
spin susceptibility at temperatures above Tc (i.e., at
T/TF ≈ 0.25 or higher) [15, 19, 20]. This was interpreted
as evidence of a pseudogap or a spin gap. In our simula-
tions, we find a suppression of χs only at much lower tem-
peratures close to Tc (see also Fig. 9 of Ref. [33]). For the
133, N = 130 system, χs is suppressed for T . 0.17TF .
We note, however, that χs is not fully converged to its
thermodynamic limit in our calculations. Since for larger
particle numbers, the suppression occurs at lower temper-
atures, we estimate an upper bound of T ∗ . 0.17TF for
the spin-gap temperature at our filling factor of ν ' 0.06.
We also observe that our large-lattice results agree re-
markably well with the theoretical results of Ref. [24].

(iv) Heat capacity: The heat capacity is difficult to
compute in quantum Monte Carlo simulations due to
large statistical fluctuations. To address this, we use the
method of Ref. [63], in which the same set of auxiliary
fields is used to compute the derivative CV = (∂E/∂T )V ,
greatly reducing the statistical errors. The heat capac-
ity is shown in Fig. 2 for 20, 40, and 80 particles (solid
symbols) along with the experimental results of Ref. [5]
(open circles). We do not show the 130 particle results
since the statistical errors are too large. We also show in
Fig. 2 the NSR result of Ref. [64], the diagrammatic t-
matrix result of Ref. [18], and the Luttinger-Ward results
of Refs. [65, 66]. Our AFMC results are in overall agree-
ment with the experimental results except for a shift in
the peak to a lower temperature. For the 113, N = 80
system the position of the peak at T ' 0.135(10)TF is
consistent with the value of Tc ' 0.130(15)TF for our
finite filling factor. We also note the overall agreement
with the Luttinger-Ward results of Refs. [65, 66].

Ref. [64] described a significant enhancement of the
UFG heat capacity at T & Tc relative to its value CV ≈ 1
in the BEC regime, and attributed this enhancement to
metastable preformed cooper pairs present in a pseudo-
gap regime. Similar enhancement was also observed in
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FIG. 2. The AFMC heat capacity (solid symbols) is compared
to experiment [5] (open circles), the t-matrix result of Ref. [18]
(dotted line), the NSR result of Ref. [64] (dashed line), and
the Luttinger-Ward results of Refs. [65, 66] (solid lines).

the t-matrix calculations of Ref. [18]. Our calculations
confirm such an enhancement. As a function of temper-
ature, we find that it washes out above T ∼ 0.17TF .

Model space and spherical cutoff.— Signatures of a
pseudogap were observed in the AFMC simulations of
Refs. [13–15] for temperatures below ∼ 0.25TF . Those
calculations used a single-particle model space with a
spherical cutoff |k| ≤ kc = π/δx in momentum. It was
shown in Ref. [43] that when using such a cutoff, the
inverse of the low-momentum scattering amplitude ac-
quires a linear dependence on the center-of-mass momen-
tum ~K, and therefore this model does not reproduce the
UFG even in the limit kF /kc → 0. In Figs. 6-8 of Ref. [33]
we demonstrate this effect in the scattering phase shifts
and the two-particle energies. We also checked that our
AFMC results change significantly when we introduce
a spherical cutoff and become comparable to those of
Refs. [13–15]; see Fig. 9 in Ref. [33].

Conclusion and outlook.— We have presented large-
scale AFMC simulations of the homogeneous UFG at a
small but finite filling factor of ν ' 0.06. We calculated a
model-independent pairing gap ∆E , the condensate frac-
tion, spin susceptibility, and heat capacity as a function
of temperature, and compared these to experiments.

We find that ∆E vanishes above the critical temper-
ature Tc (which we determine to be Tc ' 0.130(15)TF
for ν ' 0.06), and thus does not show pseudogap effects.
The spin susceptibility exhibits a moderate spin-gap ef-
fect in the range Tc . T . 0.17TF for our largest lattice
used. This result is in contrast to previous AFMC cal-
culations which claim spin-gap effects in a significantly
wider range Tc . T . 0.25TF at similar filling factors.

Our conclusion holds for ν ' 0.06. It still remains
for future work to carry out the continuum extrapolation
ν → 0 or equivalently kF re → 0.
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