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We study the quantum Hall plateau transition on rectangular tori. As the aspect ratio of the torus
is increased, the two-dimensional critical behavior, characterized by a subthermodynamic number
of topological states in a vanishing energy window around a critical energy, changes drastically. In
the thin-torus limit, the entire spectrum is Anderson-localized; however, an extensive number of
states retain a Chern number C 6= 0. We resolve this apparent paradox by mapping the thin-torus
quantum Hall system onto a disordered Thouless pump, where the Chern number corresponds to
the winding number of an electron’s path in real space during a pump cycle. We then characterize
quantitatively the crossover between the one- and two-dimensional regimes for finite torus thickness,
where the average Thouless conductance also shows anomalous scaling.

Introduction. The integer quantum Hall plateau tran-
sition [1] has a long and rich history as an example of
the interplay between disorder and topology in condensed
matter. While the quantization is ultimately due to the
presence of a topological invariant [2, 3], its astonishing
precision is due to disorder-induced localization of elec-
tron states away from the critical energy [4]. In a high
magnetic field, the motion of electrons is confined to the
lowest Landau level (LLL). The LLL carries a non-zero
Chern number, a topological invariant related to the Hall
conductance, which forbids complete localization of the
spectrum. A critical energy exists where the electron lo-
calization length ξ diverges, explaining the plateau tran-
sition as a quantum critical point that has successfully
been studied by means of scaling theories [5]. However,
the precise value of ν, the critical exponent characteriz-
ing the divergence of ξ, and whether or not it agrees with
experiment [6–9], remains controversial [10–12].

Most numerical studies of the critical exponent have
relied on the transfer matrix method for either the orig-
inal continuum LLL problem [13, 14] or the Chalker-
Coddington network model [15–18] on strip geometries.
On the other hand, purely two-dimensional methods to
determine ν have been developed based on the topolog-
ical character of individual eigenstates [19, 20] (an idea
that has since been used in several studies [11, 21–27]),
the disorder-averaged Hall [28, 29], Thouless [29, 30]
and longitudinal [31] conductance, as well as quantum
diffusion [32]. Here one considers a square torus with
both sides scaled concurrently, Lx = Ly ∼ N

1/2
φ (Nφ

is the number of magnetic flux quanta through the sys-
tem, proportional to the system’s area). The number
of states with nonzero Chern number (hereafter simply
called Chern states) is found to diverge subextensively
with system size, as N1− 1

2ν
φ [19]. The success of methods

based on the Chern number in square geometry motivates
their application to rectangular geometries Lx > Ly with
varying aspect ratio a = Lx/Ly, and particularly in the
quasi-one-dimensional limit a → ∞ at fixed thickness,

reminiscent of the transfer matrix calculations. This is
especially interesting because the defining feature of the
2D problem (the presence of a topologically robust Hall
conductance, encoded in the Chern number C) does not
have an obvious one-dimensional counterpart. While the
mathematical definition of C holds regardless of system
size or aspect ratio, on physical grounds the system in the
quasi-1D limit must be described by a local, disordered
free-fermion chain – essentially the Anderson model [33].
This raises the question of what happens to Chern states
in this limit, and how the topological character of the
LLL is manifested once the system is mapped onto a 1D
Anderson insulator.
One may reasonably expect, given the stronger

tendency towards localization in one-dimensional sys-
tems [34], that quasi-1D scaling will lead to a faster de-
cay of the fraction of Chern states relative to the 2D case
(where the fraction falls off as N−

1
2ν

φ ), perhaps even to
saturate the lower bound N−1

φ (achieved if all states but
one have C = 0). In fact, we find quite the opposite:
Chern states do not vanish under 1D scaling. On the
contrary, they represent a finite fraction of all states –
and asymptotically take over the entire spectrum!
As a byproduct, we also obtain the (longitudinal)

Thouless conductance g [35]. Both the typical and av-
erage g decay exponentially with Lx, as is expected for
localized one-dimensional systems. Interestingly though,
we find that the average g retains a memory of the 2D
critical scaling.
Existing studies of one-dimensional scaling of the inte-

ger quantum Hall problem [36, 37] focus on open bound-
ary conditions, where the crossover is seen through mix-
ing of topological edge states on opposite edges of the
strip. Our edge-free torus geometry offers a different per-
spective on the problem and reveals fascinating and un-
expected behavior. Guided by these surprising numerical
findings, we develop a theoretical understanding based on
a mapping to a disordered Thouless pump [38] and clar-
ify the meaning of the Chern number in the 1D limit.
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A quantitative description of the proliferation of Chern
states follows naturally from this perspective.
Model and numerical method. We consider a con-

tinuum model of two-dimensional (2D) electrons in a
high perpendicular magnetic field such that the dynam-
ics can be projected onto the LLL. The model is set
on a rectangular torus with sides Lx, Ly such that
LxLy = 2πNφ`2

B , where `B =
√
eB/~ is the magnetic

length, which we set to 1 henceforth. We define the as-
pect ratio a = Lx/Ly and take a ≥ 1. Disorder in the
system is modeled by a Gaussian white noise potential
V (r), 〈V (r1)V (r2)〉 = U2δ2(r1 − r2). We set U = 1
henceforth as disorder is the only energy scale in the
problem: kinetic energy is quenched in the LLL; the
cyclotron gap and interaction strength are taken to be
infinite and zero respectively. The torus has generalized
periodic boundary conditions with angles θx,y. These
also represent magnetic fluxes through the two nontrivial
loops in the torus and are needed to define and compute
Chern numbers of individual eigenstates in the disordered
problem. For each disorder realization, we compute and
diagonalize the single-particle Hamiltonian on a lattice
of boundary angles θ and store the eigenvalues {En(θ)}
and eigenvectors {|ψn(θ)〉}. The energies are used to
calculate the Thouless conductance gn ≡ Eθy [σθxEn(θ)]
(E denotes averaging, σ denotes standard deviation), a
measure of sensitivity to boundary conditions in the long
direction; the wavefunctions are used to compute each
eigenstate’s Chern number Cn via a standard numeri-
cal technique [39]. Further details on the model and the
numerical method are provided in the Supplemental Ma-
terial [40].
Density of Chern states. With the method outlined

above, we calculate the density of states with Chern num-
ber C, {ρC(E) : C ∈ Z}. These obey

∑
C ρC = ρ (total

density of states) as well as
∑
C CρC = ∂Eσxy (Hall con-

ductance). Past studies [11, 19] have characterized the
2D critical behavior by looking at the density of “current-
carrying states”, ρtop(E) ≡ ρ(E)− ρ0(E). The width of
ρtop scales as N−1/2ν2D

φ in the 2D thermodynamic limit.
In the present context, we observe completely different

behavior. Namely, the width of ρtop does not vanish as
Lx is increased. It stays roughly constant for a >∼ 1, and
eventually starts increasing for a � 1 (Fig. 1). This in-
crease is due both to the broadening of ρ±1(E) (i.e. more
pairs of Chern ±1 states appearing away from the band
center), and to an increase in higher-|C| states. Despite
these effects, the Hall conductance remains unchanged,
and is determined by the shortest side of the torus [40].
It is as if percolating in either direction is enough for a
state to acquire a nonzero Chern number.

This extensive number of topological “current-carrying
states” seems to be incompatible with the localized na-
ture of the spectrum (which we verify independently
by means of the Thouless conductance and localization

0.00

0.01

0.02

0.03

0(
E)

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
E

0.00

0.01

0.02

to
p(

E)

(b) N
16
32
64

128
196
256

FIG. 1. Density of (a) C = 0 and (b) C 6= 0 states for fixed
Ly = 10 and increasing Nφ. The density of Chern C 6= 0
states ρtop(E) grows and broadens at the expense of ρ0(E).

length). Reconciling these facts requires a careful analy-
sis of the fate of Chern numbers as the dimensionality is
tuned from d = 2 to d = 1 by increasing the aspect ratio
a.
Thin-torus limit. The above question is best addressed

in the thin-torus limit Ly � 1, though (as we shall clarify
later) the answer we find also applies to finite Ly, pro-
vided a is sufficiently large. The LLL Hamiltonian in the
thin-torus limit is approximated by

H1D =
∑
n

vnc
†
ncn + (tnc†n+1cn + h.c.) , (1)

with vn = V0(xn), tn = eiθx/NφV1(xn), and xn = (2πn+
θy)/Ly. The Vm are partial Fourier transforms of the
LLL-projected real-space disordered potential, Ṽ (x, y),
given by

Vm(x) ≡
∫ Ly

0

dy

Ly
e2πimy/Ly Ṽ (x, y) . (2)

LLL-projection suppresses non-zero wave vectors, giving
t/v ∼ e−π

2/L2
y � 1. Further-neighbor hopping terms

in Eq. (1) are exponentially smaller than t and can be
neglected. In the following, we take tn ≡ teiθx/Nφ for
simplicity, as the precise magnitudes are unimportant.
The angles θ assume very different roles in this asym-
metric limit: θx is the magnetic flux through the ring,
while θy is the parameter of a Thouless pump [38] which
smoothly moves the Landau orbits relative to the back-
ground potential. At any fixed θ, the Hamiltonian of
Eq. (1) is Anderson localized. As the pump parameter
θy is adiabatically taken through a cycle, the random
on-site potentials vn(θy) change smoothly and the sys-
tem undergoes spectral flow: at the end of the cycle,
vn(2π) = vn+1(0), so the initial and final spectra coin-
cide up to a n 7→ n + 1 translation. However, following
each eigenstate through the adiabatic cycle reveals an
interesting picture.
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Adiabatically changing a local chemical potential in
an Anderson insulator leads to non-local charge trans-
port [41] due to avoided resonances between the manip-
ulated site and arbitrarily distant ones (the distance is
practically limited by log τ , where τ is the time scale of
the adiabatic manipulation; for calculating C, we can
take τ →∞). In the present setting, varying θy adiabat-
ically manipulates all random fields at once, giving rise
to a complicated network of resonances and thus more
intricate patterns of charge transfer across the system.
However, as a consequence of adiabaticity, an electron
that starts the cycle in orbital n ends in orbital n−1 (i.e.,
at the same point in real space). Whenever two sites n1
and n2 are tuned past a resonance, charge is transported
by a sequence of virtual nearest-neighbor hops through
the shortest path between them [40]. One may expect
each electron to take a local random walk in the vicinity
of its initial site ni before ending the cycle at site ni− 1.
However, this cannot be the case for every electron: at
least one must wind around the entire system. Simple
algebra shows that the winding numbers Wn of the elec-
trons’ paths must satisfy

∑
nWn = 1 [40].

This bears intriguing similarity to the total Chern
number of states in the Landau level,

∑
n Cn = 1. In

fact, such an identification is correct: the Chern number
Cn reduces to the winding number Wn in the thin-torus
limit. This can be seen by considering the phase acquired
during a loop around the “Brillouin zone” defined by θ.
Threading flux θx does nothing to an Anderson localized
wavefunction, whereas threading a quantum of θy flux
causes it to wind Wn times around the ring, which encir-
cles the θx flux. The net phase acquired is thus 2πWn,
giving Cn = Wn. This can be straightforwardly made
rigorous by partitioning the θ torus into thin rectangu-
lar strips, so phases are defined unambiguously [40]. This
identification is the key to explaining the observed prolif-
eration of Chern states under 1D scaling. In essence, dur-
ing a Thouless pump cycle, every electron hops randomly
and non-locally across the chain many times, generically
acquiring a large winding number, and thus a large Chern
number. Quantitatively, we find the number of steps in
the random walk Nr diverges as Nr ∼ Lx; the distri-
bution of Chern numbers is approximately normal, with
standard deviation ∼ L1/2

x [40].
Dimensional crossover. Even though the thin-torus

limit Ly � 1 is a helpful simplification, the physics
described above remains valid for Ly > 1, as long as
a � 1. Hopping matrix elements are significant up to a
real-space distance O(1), i.e. a number of sites O(Ly).
These matrix elements are responsible for local level re-
pulsion and strongly suppress energy fluctuations during
the Thouless pump cycle. On a square torus, we know
from numerics that the average Thouless conductance
obeys g(E,L) ' G(EL1/ν2D), where G(x) ' g0e

−x2/2σ2

is a scaling function and g0 and σ are O(1) constants.
Inverting the definition of g yields an estimate of the en-
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FIG. 2. (a) Density of C = 1 states ρ1(E) for Ly = 10 and
varying aspect ratio a. (b) Full width at half maximum of ρ1
indicates broadening consistent with Eq. (5). (c) Rescaling
the energy by

√
ln(a) collapses the curves for different sizes.

ergy fluctuation δE of a typical state during the pump
cycle:

δE ∼ 2πvg0

L2 exp
(
− E

2

2σ2L
2/ν2D

)
. (3)

Here v is the bandwidth and 2πv/L2 is the typical level
spacing. As δE is determined by the range of local hop-
ping matrix elements, Eq. (3) remains true if we con-
sider a rectangular torus and replace L with the short
circumference Ly. The expected number of resonances
encountered during a pump cycle, Nr, is proportional
to the number of states in the spectrum with energies
within the range of fluctuations δE. Approximating
ρ(E) ' LxLy

2πv e
− 1

2 (E/σ′)2 (the exact expression [42] de-
viates slightly from a Gaussian) yields

Nr ∼ ρ(E)δE ∼ g0ae
− 1

2 (E/E0)2
, (4)

where E0 is an Lx-independent energy scale. Thus, even
away from the band center, and even for Ly > 1, in-
creasing a eventually leads to Nr >∼ 1. At that point
the crossover between 2D and 1D behavior takes place,
with typical states acquiring nontrivial winding and thus
Chern number. This crossover happens unevenly in en-
ergy: it starts at the band center (where one already has
Chern states even in the 2D thermodynamic limit) and
spreads towards the band edges. The contour defining
the crossover (fixed by setting Nr ' 1) is

E ∼
√

ln(a) . (5)

This prediction is borne out by numerical data on the
density of Chern states, ρC(E). Fig. 2 shows that the
broadening of ρtop, already visible in Fig. 1, is explained
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FIG. 3. (a) The average Thouless conductance gav(E) for
Ly = 14 decays with increasingNφ. (b) The normalized quan-
tity gav(E)/gav(0) shows scaling collapse under E 7→ EL

1/ν2D
x

with critical exponent ν2D ' 2.4. (c) Distribution of log10 g(0)
for Ly = 10, increasing Nφ. (d) Distribution of localiza-
tion length ξ for the same system sizes. An exponential tail
P ∼ e−cξ/Ly develops as Nφ increases.

fairly accurately as a scaling collapse of ρC(E/
√

ln(a)),
for large enough a.
Thouless conductance. As mentioned earlier, while 1D

scaling causes the proliferation of Chern states across the
spectrum, it also removes the critical energy character-
istic of the 2D problem and makes the entire spectrum
Anderson-localized. We verify this numerically by cal-
culating the disorder- and eigenstate-averaged Thouless
conductance gav(E), Fig. 3(a). Unlike the 2D case, where
at the center of the band gav(0) ∼ O(1) as L→∞, here
we have gav(0) ∼ e−Lx/ξ1 , as expected for a 1D problem
(we find ξ1 ' 1.7Ly). However, surprisingly, the nor-
malized quantity gav(E)/gav(0) displays scaling collapse
with the same critical exponent as the two-dimensional
case, ν2D ∼ 2.4 [43], Fig. 3(b). These results seem contra-
dictory: on the one hand, a finite ξ1 suggests localization
across the spectrum with no critical energy; on the other,
we observe signatures of a divergent ξ2 ∼ E−ν2D , repro-
ducing the 2D critical behavior, even as the scaling is
purely one-dimensional.

The variation of g across samples and eigenstates sheds
light on this issue. At the center of the band, the distri-
bution of g broadens as Lx is increased and becomes ap-
proximately log-normal (the distribution P (ln g) is shown
in Fig. 3(c)). States in the positive tail of the distribu-
tion, which are abnormally extended in the long direc-
tion, dominate the average gav. The appearance of ν2D is
to be expected as a consequence of such states: as they
percolate across the sample in Lx but not in Ly, they
are unaware of the aspect ratio, and thus display the 2D
critical behavior. However they are exponentially rare,
which explains the vanishing amplitude of the signal and

its presence in gav but not gtyp. An exponential tail in
the distribution of electron localization lengths P (ξ/Ly)
can be seen in Fig. 3(d); details on the definition and
calculation of ξ, as well as additional data, are provided
in [40].
Discussion. We have investigated the fate of the quan-

tum Hall plateau transition when the thermodynamic
limit is taken in one dimension only. Through numer-
ical diagonalization, we have uncovered surprising and
counter-intuitive behavior: Anderson localization across
the spectrum, accompanied by the proliferation of Chern
states. This led us to investigate the fate of the Chern
number, a two-dimensional topological invariant, in the
quasi-one-dimensional limit defined by a = Lx/Ly � 1.
In the thin-torus limit Ly � 1, the system maps onto
a 1D Anderson model with a Thouless pump parame-
ter that smoothly shifts the random chemical potentials.
During a pump cycle, electrons follow a random walk be-
tween resonant orbitals on the chain. We have shown that
winding number W of the random walk around the sys-
tem equals the Chern number C of the associated electron
wavefunction. This identification leads to some striking
predictions, e.g. that generic states in this limit have
large, random Chern number.
We have further shown that the above picture is valid

away from the thin-torus limit, i.e. for Ly > 1, as
long as the torus aspect ratio a is large enough. The
crossover between 2D and 1D behavior as a is increased
starts at the band center and spreads towards the band
edges. The broadening is predicted to be extremely slow,
∼
√

ln(a), but it is nonetheless visible in our numerics
at Ly ∼ O(10), quite far from the thin-torus limit.
On a theoretical level, our findings provide a new ex-

ample of subtle interplay between topology and disor-
der [44–49]. The idea of topological pumping, which goes
back to Thouless [38], is a subject of rising theoretical
interest, especially in connection to Floquet physics [50–
53] and synthetic dimensions [54]. Here it is applied in
a new, disordered context, where it provides the key to
interpret the quasi-1D limit of the quantum Hall plateau
transition.
We conclude with some remarks related to experiment.

As the non-local avoided crossings that underpin the pic-
ture presented here are generally very narrow (exponen-
tially in system size), the adiabatic time scales required
to observe this behavior in macroscopic systems are un-
physically long. However, for microscopic systems, the
manipulations required may still be performed adiabat-
ically. The necessary ingredients for a quantum simula-
tion of this problem are (i) adiabatically tunable, pseudo-
random on-site chemical potentials, (ii) nearest-neighbor
hopping, and (iii) sufficiently long coherence times (rela-
tive to the required adiabatic time scale). Clean Thouless
pumps have been successfully engineered using ultracold
bosonic [55, 56] or fermionic [57] atoms in optical su-
perlattices, single spins in diamond [58], Bose-Einstein
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condensates [59] and quantum dots [60, 61]; adding dis-
order could be an interesting new direction for these
and other experimental platforms. Finally, while imple-
menting periodic boundary conditions (i.e. arranging the
qubits on a circle) in some such platforms may be prob-
lematic, the striking coexistence of Anderson localization
and non-local charge transport across the length of the
one-dimensional quantum simulator would be observable
even on an open line segment.

This work was supported by DOE BES grant
DE-SC0002140. We acknowledge useful conversations
with Shivaji Sondhi.
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