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We study renormalization group flows in a space of observables computed by Monte Carlo sim-
ulations. As an example, we consider three-dimensional clock models, i.e., the XY spin model
perturbed by a Zq symmetric anisotropy field. For q = 4, 5, 6, a scaling function with two rele-
vant arguments describes all stages of the complex renormalization flow at the critical point and
in the ordered phase, including the cross-over from the U(1) Nambu-Goldstone fixed point to the
ultimate Zq symmetry-breaking fixed point. We expect our method to be useful in the context of
quantum-critical points with inherent dangerously irrelevant operators that cannot be tuned away
microscopically but whose renormalization flows can be analyzed as we do here for the clock models.

The renormalization group (RG) is a powerful frame-
work both for conceptual understanding of phase tran-
sitions and for calculations [1–3]. A key concept is that
a universal critical point can be stable or unstable in
the presence of perturbations, depending on their scal-
ing dimensions. Similarly, an ordered state can also be
stable or unstable under the influence of perturbations.
Under an RG process, a system flows in a space of cou-
plings which change as the length scale is increased under
coarse graining of the microscopic interactions, until fi-
nally reaching a fixed point corresponding to a phase or
phase transition. At this point, all the initially present
irrelevant couplings have decayed to zero.

RG flows can also be defined of physical observables ob-
tained by Monte Carlo (MC) simulations, allowing con-
trolled finite-size scaling analysis—some times referred
to as phenomenological renormalization [3–6]. Here we
extend the standard finite-size scaling of a single observ-
able to an entire flow in a space of two observables asso-
ciated with relevant or irrelevant couplings. The method
is particularly useful for quantifying dangerously irrele-
vant perturbations (DIPs)—those that are irrelevant at
a critical point but become relevant upon coarse graining
inside an adjacent ordered phase [7].

Scaling and RG flows.—Consider a d-dimensional lat-
tice model of length L which can be tuned to a crit-
ical point by a relevant field t, e.g., the temperature
(t = Tc−T ). With a local operator mi and its conjugate
field h, we add h

∑
imi ≡ hM ≡ hLdm to the Hamilto-

nian H. In a conventional RG calculation, a flowing field
h′ is computed under a scale transformation. Here we
will instead vary the system size, which effectively lowers
the energy scale, and calculate the response 〈m〉 using
MC simulations. Together with some quantity Q charac-
terizing the critical point and phases of the system, we

can trace out curves (MC RG flows) (Q, 〈m〉)L as L in-
creases for fixed values of h and T . These flows are very
similar to conventional RG flows in the space (t, h′).

The singular part of the free-energy density takes the
form fs(t, h, L) = L−dFs(tL

1/ν , hLy). At t = 0, the lead-
ing h dependent part is fs ∝ hLy−d, while the statistical
mechanics of H gives a contribution h〈m〉 ∝ hL−∆ from
the internal energy. Thus, we obtain the well known re-
lation y = d − ∆. The perturbation is irrelevant at the
critical point if y < 0, but, in the case of a DIP, it eventu-
ally becomes relevant as L increases in the ordered phase.
It has been known for some time that this cross-over is
associated with a length scale ξ′ ∝ t−ν

′
which may di-

verge faster than the correlation length ξ ∝ |t|−ν [8].
To take both divergent length scales properly into ac-

count, i.e., to reach the regime where tL1/ν′
is large, we

adopt the two-length scaling hypothesis [9] and write

fs(t, h, L) = L−dFs(tL
1/ν , tL1/ν′

, hLy, λL−ω), (1)

where we have also included a generic scaling correction
with exponent ω > 0. The exponents ν′ and y arise from
the same DIP and there is a relationship between them
that has been the subject of controversy [8, 10–12]. Here
we will derive the relationship from Eq. (1) and show how
the entire RG flow of two observables can be explained.

Models and observables.—We study three-dimensional
(3D) classical clock models on the simple cubic lattice,

H = −
∑
〈i,j〉

cos(θi − θj)− h
∑
i

cos(qθi), (2)

with θ ∈ [0, 2π). Based on previous studies [8, 10–16], for
q ≥ 4 the phase transition for fixed h at T = Tc belongs
to the 3D U(1) universality class, i.e., the clock field h is
irrelevant. However, for T < Tc it is relevant, reducing
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FIG. 1. MC RG flows for q = 6. Each set of connected dots
represents a fixed T and sizes L = 2, 3, 4, . . .. The sets for the
highest and lowest T and T = Tc are shown with bigger dots
in black, red and blue respectively. The inset shows detailed
flows in the critical region.

the order parameter symmetry from U(1) to Zq when
observed above the DIP length scale ξ′q.

In our MC simulations [17], for a given spin configura-
tion we compute Mx =

∑
i cos(θi) and My =

∑
i sin(θi).

With M = (M2
x + M2

y )1/2 and Θ = arccos(Mx/M), an
angular order parameter can be defined as

φq = 〈cos(qΘ)〉, (3)

which becomes non-zero in response to the Zq field. This
quantity was used to study the length scale ξ′q [10, 11, 13]
(with a slightly different definition in Refs. [10, 13]), but
here we will use it in a different way. For T ≥ Tc, φq →
0 when L → ∞, while φq → 1 for T < Tc. We will
use φq in combination with the Binder cumulant U =
2 − 〈M4〉/〈M2〉2, which takes the limiting forms U → 0
(T > Tc), U → 1 (T < Tc) and U → UXY ≈ 0.757 (at
T = Tc with 3D XY universality [18]).

MC RG Flows.—Fig. 1 shows flows of (U, φq)L for the
q = 6 ”hard” model, i.e., h → ∞ in Eq. (2). Results
for q = 4, 5 are discussed in Supplemental Material (SM)
[19], where we also determine Tc(h) for q = 4, 5, 6. The
RG process is manifested in the flows with increasing L
of the two observables at fixed T . The high-T Gaussian
fixed point (G) is at (U, φq) = (0, 0); the XY critical
point at (UXY, 0), the U(1) symmetry-breaking Nambu-
Goldstone (NG) point at (1, 0), and the Zq symmetry-
breaking point at (1, 1). For T ≥ Tc, we observe simple
flows to the fixed points, while for T < Tc there are two
stages in the flow away from the XY point; first toward
the NG point and then an NG to Zq crossover. While
this multi-stage flow is expected based on previous RG
results [8, 11, 12], our description with a phenomenolog-
ical scaling function for accessible observables provides
a more practical and intuitive framework for numerical
simulations.

Scaling dimensions.—We first study the scaling dimen-
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FIG. 2. Log-log plot of the critical angular order parameter
φq vs the linear system size L for several q and h values. The
fitting lines correspond to the power-law form φq ∝ L−|yq|

and the resulting exponents are summarized in Table I.

sion yq of the Zq field, following the red curve that tends
to the XY fixed point in Fig. 1. Previous MC estimates
used Zq anisotropy correlators in the pure XY model for
q = 4 [16]. Since the Zq field is irrelevant for q ≥ 4,
the decay power 2∆q of the correlation function is larger
than 6, which makes it difficult to determine ∆q accu-
rately (see SM [19] for some results). The decay of the
induced φq is analyzed in Fig. 2 for q = 4, 5, 6 at selected
h values. The results listed in Table I demonstrate that
φq scales as M = Ldm in the general discussion above,
i.e., φq ∝ L−∆q+d = L−|yq|.

For q = 4 the Zq field may only be irrelevant for small
h; the hard model (h =∞) is equivalent to two decoupled
Ising models, and for h = 2 the transition already seems
to not be in the XY universality class [13]. Here we use
h = 1. Our simulations extend up to L = 120 for q = 4
but smaller for larger q because of the long runs needed
to obtain sufficiently small error bars on φq. To reduce
effects of scaling corrections we have excluded small sys-
tems until a good fit obtains. Our result y4 = −0.114(2)
agrees well with the best previous numerical result [16],
but the error bar is smaller. It also matches a high-
order nonperturbative expansion [12]. For q = 5, we
have used joint fit to data for several h values, with a
common exponent but different prefactors. Our result
y5 = −1.27(1) is close to an extrapolated value from sim-
ulations for smaller q [11] but differs significantly from
the field-theory expansions [8, 12]. For q = 6 we obtain
y6 = −2.55(6), which again agrees well with the extrapo-
lated value [11] but differs from those in Refs. [8, 12]. For
all the q values studied, our results show that the first-
order ε-expansion [8] overestimates y6, while the nonper-
turbative expansion [12] underestimates it for q > 4. All
results agree well with a very recent MC calculation of
an optimized correlation function [21].

Having determined the scaling dimensions, the Zq or-
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TABLE I. Scaling dimensions yq of the Zq field for q = 4, 5, 6.
The numbers within parenthesis indicate the statistical errors
(one standard deviation) of the preceding digit.

− yq
q

4 5 6

Ref. [8] 0.2 1.5 3.0
Ref. [12] 0.114 1.16 2.29
Refs. [11, 16] 0.108(6) 1.25 2.5
Ref. [21] 0.128(6) 1.265(6) 2.509(7)
This work 0.114(2) 1.27(1) 2.55(6)

der parameter in the ordered phase takes the form

φq = LyqΦ(tL1/ν , tL1/ν′
q ), (4)

where we neglect the irrelevant arguments in Eq. (1) as
they merely produce corrections here. We apply this form
to curves such as those shown in Fig. 1, primarily by
defining distances to the various fixed points. We study
q = 6 specifically but keep the general-q notation.

Scaling near the XY point.—Though the critical point
is well known, it is still useful to study the flows in the
two-dimensional space in Fig. 1. We analyze the mini-
mum distances of the T < Tc curves to (UXY, 0). Here

tL1/ν′
q � tL1/ν � 1 in Eq. (4), and to leading order

φq ∝ Lyq (1 + tL1/ν), (5)

where we do not include unimportant factors for simplic-
ity. The Binder cumulant scales as

U = U(tL1/ν) = UXY + tL1/ν + L−ω, (6)

where ω is the smallest correction exponent affecting U .
The scaling form (i.e., without unimportant factors) of
the distance d1 to the XY fixed point is

d1 ∝
√

(tL1/ν + L−ω)2 + L2yq (1 + tL1/ν)2. (7)

Since ω � |y6|, the first term in the square-root domi-
nates; d1 ∝ tL1/ν + L−ω, i.e., d1 → U − UXY here (but
not necessarily in general). Minimizing for fixed t gives
the distance D1 and the corresponding system size L1

D1 ∝ t
ω

1/ν+ω = t0.345(6), L1 ∝ t−
1

1/ν+ω = t−0.440(4), (8)

where we have used ν = 0.6717(1) and ω = 0.785(20)
[18]. Fig. 3(a) shows d1 versus L and Fig. 3(b) shows
power-law fits to D1(t) and L1(t), where the exponents
are 0.372(1) and −0.404(4), respectively. These values
are in reasonable agreement with Eq. (8) considering scal-
ing corrections for the rather small sizes [19] and the ne-
glected subleading φ6 contribution in Eq. (7). The error
bars reflect only statistical fluctuations.

Another characteristic of the T < Tc curves in Fig. 1
is the minimum distance to the horizontal axis. This
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FIG. 3. (a) Distance d1(L) to the XY fixed point. Black and
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respectively, and open circles show temperatures in between.
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FIG. 4. (a) Distance of the curves in Fig. 1 to the x-axis.
The black and blue solid circles correspond to T = 2.06 and
2.14, respectively, and the open circles are for equally spaced
T . (b) The minimums (red dots) in (a) exhibit scaling in t of
the minimum distance D2 and the corresponding size L2.

RG stage between the XY and NG fixed points is still
governed by the XY criticality because tL1/ν and tL1/ν′

q

are both small. Since tL1/ν′
q � tL1/ν , φq is given by

Eq. (5) and the minimum value D2 and corresponding
system size therefore scale with t as (for q = 6)

D2 ∝ t−y6ν = t1.71(4), L2 ∝ t−ν = t−0.6717(1). (9)

The expected exponents indicated above agree reason-
ably well with our fits in Fig. 4, where the exponents are
1.88(2) and −0.60(3), respectively. The deviations are
again likely due to scaling corrections.

Cross-over exponent ν′q.—When tL1/ν � 1 but tL1/ν′
q

is arbitrary, Eq. (4) must reduce to

φq = Lyq (tL1/ν)ag(tL1/ν′
q ), (10)

where the exponent a follows from the physics of the clock
model. Specifically, we can ask how φq depends on L at
fixed t when the U(1) symmetry is barely broken down to
Zq, i.e., when φq � 1. This is a subtle issue at the heart
of the long-standing controversy regarding the symmetry
cross-over [8, 10–12, 20]. Instead of invoking physical
arguments, we will here simply posit that φq ∝ Lp in

the regime where tL1/ν is large but tL1/ν′
q remains small

[hence g ≈ 1 in Eq. (10)], and later show how p can be
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consistently determined from the MC RG flows. Thus,
we have a = ν(p− yq) in Eq. (10);

φq = Lptν(p−yq)g(tL1/ν′
q ). (11)

This form should apply also when φq → 1, demanding

g → (tL1/ν′
q )b with b = −ν(p− yq) and ν′q = −b/p. Then

ν′q = ν(1− yq/p) = ν(1 + |yq|/p), (12)

which for p = 3 agrees with Ref. [10], while for p = 2
it agrees with Refs. [11, 12]. When φq deviates from 1,

g → (tL1/ν′
q )b[1− k(tL1/ν′

q )], so that for large tL1/ν′
q

φq → 1− k(tL1/ν′
q ), (13)

where the function k must be dimensionless.
The exponent ν′q in Eq. (13) can be determined by a

standard data-collapse procedure [10, 11]. Here we pro-
ceed in a different way: The function k(x) can be Taylor
expanded around some arbitrary point x0 where φq = y0;
φq = y0 + a(x− x0), or φq = ax+ b for some b. For fixed
t, we consider L = Lc for which φq(Lc) = e for some e,

which gives Lc ∝ t−ν
′
q . In Fig. 5(a) we extract Lc for

e = 0.5, 0.55, and 0.6. Analyzing the scaling behavior
with t in Fig. 5(b), we find ν′6 = 1.52(4). Thus, Eq. (12)
with |y6| = 2.55(6) is satisfied if p = 2, in agreement
with Refs. [11, 12]. From Eq. (11), the initial growth of
φq with L is then φq ∝ L2; not ∝ L3 [10].

Near the NG fixed point.—Finally we consider the dis-
tance to the NG fixed point (1, 0), where Eq. (11) applies
with g ≈ 1 (L � ξ′q can be tested self-consistently [19]).

U is close to 1, but should remain of the form U(tL1/ν)
because, as we will see, L and t for a given curve in the re-
gion of interest are related such that t→ 0 when L→∞.
We need 1− U , which has a non-trivial scaling form

1− U ∝ (tL1/ν)−r, (14)

where it has been argued that, in some cases, r = dν = 3ν
[22]. However, this result is based on subtle assumptions
and may not be generic [23]. As shown in SM [19], r =
1.52(2) 6= 3ν for the XY model.

The distance to the NG fixed point is, from Eq. (14)
and Eq. (11) with ν(2− yq) = 2ν′q and g ≈ 1;

d3 =
√
L−2r/νt−2r + L4t4ν

′
q , (15)

and minimizing with respect to L leads to

D3 ∝
√
t2r(R−1) + t4(ν′

q−Rν), L3 ∝ t−νR, (16)

where R = (r+2ν′q)/(r+2ν). For the q = 6 case we then

have D3 ∝ t0.9(1) and L3 ∝ t−1.07(3). From the analysis
in Fig. 6 the exponents are 1.19(3) and −1.14(2), respec-
tively, in reasonable agreement with the prediction, again
considering that we have not included any scaling correc-
tions. The cross-over behavior around the NG point is
also the most intricate of all the regions in the way the
two length scales intermingle.

Discussion.—The standard finite-size scaling hypothe-
sis in the presence of a DIP (see, e.g., Ref. [24]) includes
only tL1/ν and the irrelevant field hLy in Eq. (1), which
is sufficient for extracting the critical exponents close to
Tc; up to |T − Tc| ∝ L−1/ν . As we have shown here with

the clock model, the other relevant variable tL1/ν′
q is nec-

essary for describing the symmetry cross-over from U(1)
to Zq. By considering different necessary (for scaling)
limiting forms when the arguments are small or large, we
have quantitatively explained the entire MC RG flows.

The controversial relationship between ν′q and the scal-
ing dimension yq [8, 10–12, 20] involves an exponent p
associated with the initial formation of an effective Zq
symmetric potential for the order parameter. Analytical
RG methods for related problems, e.g., the Sine-Gordon
model with a weak potential are indeed highly non-trivial
and sensitive to the type of approximation used [25]. In
our approach, p for a given system is obtained from nu-
merical data and can then be used to further understand-
ing of the subtle physics of the DIP. We have here con-
firmed numerically that p = 2 in the clock model [11, 12],
but this exponent is not necessarily universal—it may
depend on a combination of the finite-size properties of
the fixed point with the higher symmetry (here the well-
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understood NG point [26, 27]) and the mechanisms of the
DIP causing the lowering of the symmetry.

Our method should be useful in the context of decon-
fined quantum criticality [28–30], where a scaling ansatz
with two relevant arguments was introduced to account
for anomalous scaling in 2D quantum magnets [9]. There
the DIP cannot be tuned away (unlike some fermionic
models [31]), because it is connected to the lattice itself.
Thus, the method introduced here of studying scaling
and RG flows in the presence of a finite DIP is ideal.
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