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The free energy landscape of mean field marginal glasses is ultrametric. We demonstrate that this
feature persists in finite three dimensional systems which are out of equilibrium by finding sets of
minima which are nearby in configuration space. By calculating the distance between these nearby
minima, we produce a small region of the distance metric. This metric exhibits a clear hierarchical
structure and shows the signature of an ultrametric space. That such a hierarchy exists for the
jamming energy landscape provides direct evidence for the existence of a marginal phase along the
zero temperature jamming line.

The energy landscape surrounding a crystalline ma-
terial clearly reflects the underlying crystal symmetries.
Likewise, the energy landscape surrounding an amor-
phous material must reflect the replica symmetries under-
lying amorphous systems. The replica theory of glasses
has shown that in the mean field limit, amorphous sys-
tems can exist in the liquid phase, the stable glass phase,
or the marginal Gardner phase [1–8]. The energy land-
scape of the liquid phase is a single smooth basin, reflect-
ing the unbroken replica symmetry of an ergodic phase.
In the stable glass phase, this replica symmetry is bro-
ken and the landscape consists of many smooth basins
separated by energy barriers [7]. However, within any
individual basin, replica symmetry is still present. In
the marginal Gardner phase, the replica symmetry is in-
finitely broken as each sub-basin is itself broken up into
many sub-basins ad infinitum [4, 6, 9–14]. In the mean
field framework, jamming is predicted to lie within the
marginal Gardner phase [10–12, 14, 15]. Indirect evi-
dence for this phase in thermal systems has been ob-
served in numerical simulations [16–22], in two dimen-
sional pseudo-thermal granular systems [23], and in ther-
mal colloidal systems [24]. The mean field result is ap-
plicable to low dimensional systems as evidenced by a
recent result demonstrating through thermal exploration
that the free energy landscape of quenched soft spheres
has a hierarchical structure [22]. Similarly, the free en-
ergy landscape of thermal disks at low temperatures has
been observed to be hierarchical [21]. However, it is un-
known how well this theory relates to physically rele-
vant three dimensional athermal jammed packings [25–
28] for which not only are dynamics absent, but the sys-
tem need not be created by an equilibrium process, and
for which all behavior is solely determined by geometry.
In this paper, we directly measure the Gardner phase in
over-jammed systems by constructing the distance metric
between nearby minima and characterizing its hierarchy
and ultrametricity. We find that for a range of pressures,
jammed systems are both hierarchical and ultrametric.

As illustrated in Figure 1, the single replica symmetry
breaking (1RSB) solution reflects the fact that a stable
glass phase is characterized by distinct, infinitely long-
lived energy basins. The solution with infinitely many
distinct basins-within-basins representing the marginal

Gardner phase is called the fullRSB solution [1, 5, 29].
The hierarchical structure of a marginal Gardner phase
results in minima forming a tree-like structure in phase
space for which minima within a given sub-basin will all
be much closer to one another than they will be to min-
ima within any other sub-basin [3]. This feature is cod-
ified by the ultrametric inequality [30, 31] which states
that the distance d between any three configurations a, b,
and c must satisfy

d (a, c) ≤ max [d (a, b) , d (b, c)]. (1)

We construct jammed packings of N monodisperse soft
spheres interacting through a harmonic contact potential
in three dimensions using the FIRE algorithm [32] as im-
plemented by the pyCudaPacking software [28, 33, 34].
In order to unambiguously distinguish nearby minima
in the energy landscape, all calculations are done with
quad precision floating point numbers and minimization
is only halted once the maximum unbalanced force on
any particle is less than 10−20 in natural units. Sys-
tems are created in a cube of side length 1 with periodic
boundary conditions and at a large initial packing frac-
tion φ = 0.8. These packings are then brought to a spec-
ified pressure [35] through an iterative process exploiting
the known scaling between packing fraction and pressure
for over-jammed systems [36].

In sufficiently small systems (N ∼ 10 in two dimen-
sions), one can sample the entire energy landscape, enu-
merate all minima, and use these minima to construct the
metric for the landscape [37, 38]. However, this quickly
becomes intractable as the number of minima increases
exponentially with increasing N. Choosing energy min-
ima at random results in a small uncorrelated sample
which will trivially not reveal any hierarchical structure
as it is extraordinarily unlikely that two minima will be
a part of the same deep sub-basin [39, 40]. Instead, we
search for correlated samples with a small number of min-
ima which are close together in configuration space and
thus have the power to reveal any existing hierarchy.

To explore behavior as a function of distance to jam-
ming, we create initial systems at logarithmically spaced
pressures, p, running from 10−1 down to 10−5.5 in nat-
ural units. Given a system at a specified pressure, we
explore the nearby minima that characterize the local en-
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Figure 1. Above: two dimensional schematic illustrations
of the energy landscape present in the stable (1RSB) and
marginal Gardner (fullRSB) phases, below: their respective
metrics. The ij entry in the metric describes the distance be-
tween minimum i and minimum j. The stable system has two
levels of distinct infinitely long-lived free energy basins, shown
as the set of circles contained within a larger circle. The met-
ric for the stable phase likewise reflects this hierarchy, shown
schematically below. In the marginal Gardner system, every
sub-basin has sub-basins forming a fractal energy landscape.
The metric for such a landscape reflects marginality and is
shown schematically below. Note that we depict each basin
as having the same number of sub-basins, but marginal sys-
tems do not generally have this feature.

ergy landscape by repeatedly perturbing the initial con-
ditions of the original minimum and re-minimizing. Each
perturbation is chosen randomly from a Gaussian distri-
bution and amounts to moving each particle a random
distance in a random direction. Due to the random na-
ture of the perturbation, there will be a small component
of global particle translation. To remove this we subtract
off the global translation when calculating ε, the mag-
nitude of the perturbation. Further, this magnitude is
normalized by the typical interparticle spacing, N−1/3,
to remove the trivial dependence on the number of par-
ticles in the system in a way which is independent of the
system’s packing fraction.

Depending on the initial pressure, many to most
nearby perturbed systems will return to the original con-
figuration. To adequately sample the nearby landscape,
we continue to perturb the original minimum until we
have found 500 distinct minima (with the exception of
the data presented in Figure 4 for which 5000 minima
were found).

Finding the metric for nearby minima using the per-
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Figure 2. Two dimensional histograms of the distribution
of normalized metric distance to the original packing as a
function of the size of the perturbation. The original packing
is perturbed by a Gaussian random vector with length ε and
then minimized. The distance between the original minimum
and this newly discovered minimum, d (a, b) , is found. This

distance is normalized by
√

|a| |b| where the absolute value of
a system |a| , is defined as d (a, 0) and 0 is the contact network
containing all zeros. From the top, plots for packings with 64,
256, 1024, and 4096 particles at pressure p = 10−3. We see
that these curves all take a similar functional form and have
a normalized metric distance of about 1 at 0.4

√
N which is

thus a natural value for εmax.

turbation technique requires choosing a length scale for
the perturbation. A perturbation which is too small will
frequently lead back to the original minimum. A per-
turbation which is too large will result in minima which
do not fall within the same top-level super-basin and are
not sufficiently nearby in configuration space to properly
probe the hierarchical structure of the landscape. Be-
cause the configuration space is Nd dimensional, sam-
pling a small spherical volume of the space biases points
to the surface of the sphere. Instead, to better sample
nearby minima, the length of the perturbation ε is chosen
from a uniform distribution between 0 and εmax.

Figure 2 shows the magnitude of the initial perturba-
tion, scaled by

√
N , plotted against the resulting nor-

malized distances between the original system and the
minimized perturbed system. A scaled distance of one
means that the number of stable contacts that differ be-
tween two systems is comparable to the number of stable
contacts present within each system. Systems that are
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Figure 3. Evolution of hierarchy with minimization. 500 configurations with N = 4096 are prepared by perturbing a random
minimum at a pressure 10−3. The metric distance between every pair of configurations, as given in equation 2, is shown for
0, 100, and 1000 minimization iterations as well as for fully minimized systems. The color scale reflects the metric distance
is labelled by square rooted numbers, reflecting the fact that the metric distance is roughly the square root of the number of
changed contacts between two systems for d(a, b) <

√
N .

greater than this distance bear no more structural rela-
tionship and are thus in different top-level basins, mak-
ing this a natural cutoff for exploring the hierarchical
structure of the local energy landscape. The relation-
ship between distance and initial perturbation becomes
sharper with increasing N and does not depend strongly
on pressure. Exploiting this empirical relationship, we
set εmax = 0.4

√
N.

Given a set of nearby minima, we construct the met-
ric d by calculating the distance between every pair of
minima. To avoid the ambiguity introduced by rattlers
and by global drifts, we define the distance based on the
stable contact vector network within each system. The
stable contact vector between particle i and particle j for

configuration a is denoted as ~Cij
a . If two particles are not

in contact, the contact vector between them is taken to
be ~0. The distance between two systems a and b is

d (a, b) ≡ 1

〈σ〉

√∑
ij

(
~Cij
a − ~Cij

b

)2
(2)

where σ is the diameter of a particle. This metric has the
convenient property that d(a, b) will be approximately
equal to the square root of the number of contacts that
differ between the two minima for d(a, b) <

√
N .

For any set of elements with a metric, one can con-
struct a new ultrametric by changing the pairwise dis-
tances. There exists a family of ultrametrics for which
every distance is smaller than that found in the origi-
nal metric. Of these, the ultrametric that is closest to
the original metric is called the subdominant ultramet-
ric, d<, and can be constructed from the original metric
using a minimum spanning tree [41, 42] as detailed in the
supplementary information. We characterize the general-
ized distance between the subdominant ultrametric and
the original metric as

D ≡
√〈

(d(a, b)− d<(a, b))
2
〉

(3)

where the angle brackets denote an average taken over
every pair of a and b. D = 0 indicates a precisely ultra-
metric system.

Development of hierarchy upon minimization – Fig-
ure 3 shows the evolution of the metric between distinct
nearby minima of N = 4096 particles as a function of it-
erations of the minimization protocol. These 500 minima
are all initially created by the above perturbation process
around an arbitrarily chosen initial minimum. The sim-
ple nature of this random perturbation is revealed in the
first panel which shows every system is initially nearly
equidistant (shown in black and dark green). After 100
iterations (second panel) of minimization, the structure
of a basin (shown in black and blue) begins to appear as
some systems relax towards the initial minimum by re-
forming contacts; meanwhile others relax away by form-
ing different contacts and fall into distinct super-basins
(shown in lighter green). After 1000 iterations (third
panel), the hierarchical structure begins to appear but
only becomes fully realized once systems are fully mini-
mized (final panel). The metrics are all sorted using the
single link clustering algorithm [43] on the subdominant
ultrametric of the fully minimized systems.

The hierarchical structure at different pressures – We
plot the metric and corresponding subdominant ultra-
metric for minima of N = 4096 particles far from jam-
ming, p = 10−1, and those closer to jamming, p = 10−4,
in Figure 4. These metrics are each constructed from
5000 distinct nearby minima. As jamming is approached,
we observe the metric to become more similar to the sub-
dominant ultrametric and we see that ever fewer minima
fall into the same sub-basins. Visually, systems at a low
pressure have a metric that is closer to the subdominant
ultrametric than do those at high pressure. This can be
observed in the quality of the color scale matching and
the sharpness of the boxes corresponding to sub-basins.
For the high pressure metric, three-fifths of all systems
differ from one another by less than one contact per par-
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Figure 4. Metrics (top) and corresponding subdominant ultrametrics (bottom) as a function of pressure constructed from 5000
systems with N = 4096 particles. Next to each metric and ultrametric is a blowup of the region for which the subdominant
ultrametric distance is less than

√
4096 which amounts to approximately 1 contact per particle. Contours of the subdominant

ultrametric are overlayed to highlight the hierarchy and their values are shown on the color bar. The color scheme is the same
as in Figure 3.

ticle whereas at low pressure about two-fifths of the sys-
tems differ by less than this amount. Once perturbed,
the positions of particles for low pressure systems do not
need to change as much before finding a new minimum.
As the pressure is decreased, the number of nearby min-
ima explodes leading to a shrinking of the region that
can be densely sampled. Both of these results arise from
the increasingly rough and hierarchical energy landscape
upon the approach to jamming.

We quantify the qualitative result of increasing ultra-
metricity with decreasing pressure in Figure 5 by plotting
D as a function of scaled pressure, N2p, which can be in-
terpreted as the distance to jamming [44]. We see that
for all system sizes D collapses onto a master curve which
achieves a plateau value of about 2.7 as N2p goes to zero.
This means that on average the distance between any
pair of minima will be bigger than the distance needed
for ultrametricity by about 2.7. However, the distance
between any pair of minima itself scales with

√
N so this

fractional excess of distance will tend to zero as N be-
comes large. Therefore in the thermodynamic limit the
metric becomes precisely ultrametric for all of the pres-
sures explored.

Conclusions – The structure of the distance metric be-
tween minima provides the first evidence that the energy
landscape of over-jammed three dimensional configura-
tions becomes hierarchical and ultrametric in the thermo-
dynamic limit for all pressures sampled. In this limit, the
marginal Gardner phase arises as strictly a consequence
of geometry with no recourse to thermal fluctuations. It
is far from clear that this hierarchy and ultrametricity

Figure 5. The generalized distance between the subdominant
ultrametric and the original metric, D, as a function of pres-
sure and system size. The number of systems over which each
point is averaged is chosen such that the standard error bars
fall below a threshold. Systems of different sizes fall on a
master curve.

arises for such low-dimensional configurations, especially
with finite numbers of particles. This result points to
the universality of the marginal Gardner phase within
amorphous materials as it has now been measured within
athermal materials in addition to the already known ther-
mal [21, 22] and mean-field limits [2]. By exploring the
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energy landscape at zero temperature and never with any
sense of thermal exploration, we have sampled a spatially
localized region of phase space. Our results demonstrate
that the Gardner phenomenology is not just restricted to
the easily accessible regions of configuration space that
are seen in thermal materials, but is instead present ev-
erywhere.

This research demonstrates that Gardner physics can
be observed in athermal out-of-equilibrium systems. Fur-
thermore, that this result can be seen in an athermal sys-
tem demonstrates that the Gardner transition controls
not only the free energy landscape but also the underly-
ing energy landscape. As such, Gardner physics should

be amenable to experimental tests which need not rely
on thermal systems. This innovation marks a significant
step forward in fully understanding glasses and jammed
materials as we unify the concept of marginality in amor-
phous systems.
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