aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Biexciton Condensation in Electron-Hole-Doped Hubbard
Bilayers: A Sign-Problem-Free Quantum Monte Carlo Study
Xu-Xin Huang, Martin Claassen, Edwin W. Huang, Brian Moritz, and Thomas P. Devereaux

Phys. Rev. Lett. 124, 077601 — Published 19 February 2020
DOI: 10.1103/PhysRevLett.124.077601


http://dx.doi.org/10.1103/PhysRevLett.124.077601

Biexciton Condensation in Electron-Hole-Doped Hubbard Bilayers —

A Sign-Problem-Free Quantum Monte Carlo Study

Xu-Xin Huang,? Martin Claassen,? Edwin W. Huang,?* Brian Moritz,%® and Thomas P. Devereaux

! Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
2Stanford Institute for Materials and Energy Sciences,
SLAC National Accelerator Laboratory and Stanford University,
2575 Sand Hill Road, Menlo Park, CA 94025, USA
3 Center for Computational Quantum Physics, Flatiron Institute,
Simons Foundation, 162 5th Ave., New York, NY 10010, USA
4 Department of Physics, Stanford University, Stanford, CA 94305, USA

5 Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202, USA
S Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA

"Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA
(Dated: January 14, 2020)

The bilayer Hubbard model with electron-hole doping is an ideal platform to study excitonic orders
due to suppressed recombination via spatial separation of electrons and holes. However, suffering
from the sign problem, previous quantum Monte Carlo studies could not arrive at an unequivocal
conclusion regarding the presence of phases with clear signatures of excitonic condensation in bilayer
Hubbard models. Here, we develop a determinant quantum Monte Carlo (DQMC) algorithm for the
bilayer Hubbard model that is sign-problem-free for equal and opposite doping in the two layers, and
study excitonic order and charge and spin density modulations as a function of chemical potential
difference between the two layers, on-site Coulomb repulsion, and inter-layer interaction. In the
intermediate coupling regime and in proximity to the SU(4)-symmetric point, we find a biexcitonic
condensate phase at finite electron-hole doping, as well as a competing (7, 7) charge density wave
(CDW) state. We extract the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature from
superfluid density and a finite size scaling analysis of the correlation functions, and explain our

2,6,7

results in terms of an effective biexcitonic hardcore boson model.

Introduction: Soon after the prediction of Bose-
Einstein condensation in 1926, it was realized that the
concept of condensation can be generalized to arbitrary
systems of bosonic quasiparticles. One paradigmatic ex-
ample has been the BCS ground state of Cooper pairs in
superconductors[1, 2]. Exciton condensation is a closely
related phenomenon, in which pairs of electrons and
holes condense to form a charge-neutral superfluid, and
can be understood in a similar manner by invoking an
electron-hole transformation. Experimental realizations
of exciton condensation have been achieved in quantum
Hall bilayers|[3], semiconductor quantum wells[4], double
bilayer graphene[5], and in recent experiments demon-
strating compelling signatures for exciton condensation
in TiSez[6] and TazNiSes[7].

A major obstacle for studies of excitonic phenom-
ena has been their short lifetime. Specifically for exci-
tonic ordering, spatial separation of electrons and holes
into two layers was proposed to suppress electron-hole
recombination[8]. Following this idea, excitonic order,
including exciton condensation and biexciton formation,
has been extensively studied in electron-hole bilayer con-
tinuous models, which describe systems with electrons
and holes confined in quantum wells separated into two
layers by a barrier[9-14]. As well, studies of supercon-
ductivity in strongly correlated materials recently have
motivated exploration of the electron-hole counterpart
in two-band Hubbard-like lattice models[15-24]. How-

ever, due to a severe fermion sign problem, a previous
DQMC study[16] of the spin-1/2 bilayer Hubbard model
could not arrive at an unequivocal conclusion regarding
the existence of exciton condensation. To address this is-
sue, here, we develop a sign-problem-free quantum Monte
Carlo algorithm for the bilayer Hubbard model at overall
half filling, with equal and opposite doping in each layer,
and investigate signatures of excitonic ordering.

Methods: The bilayer Hubbard model studied in this
work has a form

H=Hy+V,
Hy=—t Y (tlutjao+hec)—pd (Rine — nipo),
(i,4), 00,0 i
A R 1. . 1
V= UZ(niaT - 5)(”1‘@ - 5)
VS (iar — ) (e — 1), (1)
2 2

ioco’

split between the kinetic, Ho, and interaction, V, terms,
where éjw(émo) are creation(annihilation) operators for
an electron at site ¢ in layer @« € {A, B} with spin
o € {1,4} and the number operator o, = é;rwémg.
The parameters ¢ and p denote the intra-layer hopping
amplitude between nearest neighbors and the electron-
hole chemical potential, respectively, while U and V are
the on-site and inter-layer Coulomb repulsion, respec-
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FIG. 1. (a) Illustration of parameters in the bilayer Hubbard
Hamiltonian Eq. (1). (b) Density plot of the spin correlation
function Ss(q) in the first Brillouin zone for U = V = 5¢ and
u = 0t, a SU(4)-symmetric point. The system size is L = 12.
The inverse temperature is set at 8 = 12/%.

tively. To maintain overall particle-hole symmetry, re-
quired by our sign-problem free algorithm, layer A and
layer B have equal but opposite filling. All parameters
are illustrated schematically in Fig. 1(a). Upon inclusion
of an interlayer hopping term, the bilayer Hubbard model
described by Eq. (1) will be exactly the same as the one
studied in Ref. [16].

We characterize the bilayer Hubbard Hamiltonian
in Eq. (1) using determinant quantum Monte Carlo
(DQMC), a numerically-exact method to simulate inter-
acting quantum many-body systems at finite tempera-
ture. Detailed introductions to the DQMC algorithm
can be found in Ref. [25-27].

In general, the Hubbard-Stratonovich (HS) field con-
figuration dependent Boltzmann weight is

ws = det [I 4+ Bg], (2)

where I is the identity matrix and Bg is a matrix de-
pends on the the configuration s. The determinant per
HS field configuration in Eq. (2) can be negative (or even
complex) for fermions in generic cases, which is known
as the fermion sign problem, giving rise to large statis-
tical errors and restricting simulations to relatively high
temperatures.

Over the past few years, a number of algorithms were
proposed to “solve” this fermion sign problem for spe-
cific models and parameter regimes[28-35]. One possible
strategy to prove that the probability weights are pos-
itive semi-definite is to show that I 4+ Bg has an anti-
unitary symmetry T, i.e. T2 = —T and T~ }(I+ B)T =
I+ B4[28]. To achieve this, we first perform a single-
layer particle-hole transformation on the Hamiltonian H:
¢igo — (—1)% IBW where §; is even/odd on neighboring
site. Then the interacting part of the Hamiltonian V
can be decomposed by introducing two sets of spin-1 HS
field configurations {s} and {s} in spacetime, each tak-
ing values {—1,0,1}. Consider now an unconventional

anti-unitary symmetry

T= ZHLA, o)(i,B, 0| — |i, B,

o

o)i, A, o|K,  (3)

where K is the complex- conjugation operator. Matrix
T is related to operator T by cfTc = T where ¢ =
(csCi, A1+ Ci AL, Ci B Ci B, )y ---). One finds that I+ By is
symmetric under T when

Ul <v, (4)

which in turn determines the sign-problem-free param-
eter regime of the algorithm. In real materials, such
a regime can arise for instance via electron-phonon
coupling that preferentially reduces the effective onsite
electron-electron repulsion[36].

Details for the sign-problem-free algorithm are given
in the Supplemental Material. The strategy proposed
here works for all bipartite lattices, including square and
honeycomb lattices. Here, we focus on presenting results
for the square lattice with periodic boundary condition.

Results: We start by presenting results at U = V and
i = 0t, where the Hamiltonian is SU(4) symmetric[37,
38]. Charge and spin modulations are described by the
charge correlation function S.(¢) and the spin correlation
function S;(q) defined in the usual way (see the Supple-
mental Material for definitions). Particle-hole symmetry
between the two layers ensures that we can restrict mea-
surements of the charge and spin correlation functions
to the electron-doped layer (layer A). Fig. 1(b) shows
the spin correlation function Sq(q) for U = V = 5¢ and
= 0, measured with a system of linear size L = 12 at
inverse temperature 8 = 12/t. There is a clear enhance-
ment of Sy(q) at ¢ = (m,7), while the charge correlation
function S.(§) shows no feature here (see the Supplemen-
tal Material), indicating SU(4) antiferromagnetism.

Exciton condensation may be obtained by breaking the
U(1) symmetry for the conserved charge Y. 740 —7iBo-
However, with the SU(4) symmetry, the invariance of H
under transformation A |+ B 7T entails the equivalence
between excitonic and spin ordering, which is confirmed
numerically as shown in the Supplementary Material.
It is therefore natural to inquire about instabilities to-
wards excitonic condensation upon a weak breaking of
the SU(4) symmetry. In the following, we hence choose
U = 5t,V = 6t, which reduces SU(4) to SU(2)xSU(2),
representing two independent spin rotational symmetries
for layer A and layer B, to lift the degeneracy between
excitonic and spin ordering, and systematically study the
phase diagram as a function of varying electron-hole dop-
ing w in the two layers.

Consider now the order parameter for a conventional
excitonic condensate in either singlet or triplet chan-
nels, described generlcally by single- exmton creation op-

oo’ A,
erators of the form bq = foor C ChrqacT . CiBor- Such
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FIG. 2. Summary of results for U = 5¢, V = 6t and electron-hole chemical potentials ranging from p = 0t to p = 1.4¢, obtained
with a system of linear size L = 12 at inverse temperature S = 12/t. (a) Sc(m,7) (blue), P.(0,0) (red) and () (green) plotted
as functions of u, with error bars for each data point taken from Monte Carlo estimates. The error bars are of the size of the
marker for most of the data points. Grey dashed lines separating CDW, Bi-EC, and BI phases are guides to the eye. (b) P.(q)
in the first Brillouin zone at p = 0t (left), ;1 = 0.6t (middle) and g = 1.2¢ (right). (c¢) Sc(§) in the first Brillouin zone at p = 0t
(left), p = 0.6¢ (middle) and p = 1.2¢ (right). The black points in (b) and (c) identify actual data points from the calculation,
whereas the colored surfaces are interpolated from these data points.

a phase breaks both the excitonic U(1) and resid-
ual SU(2)xSU(2) spin rotation symmetry, precluding
a finite-temperature phase transition by the Mermin-
Wagner theorem[39]. Instead, intriguingly, we can define
a biexciton creation/annihilation operator

A() = élgyely érarérm (5)

which breaks the excitonic U(1) symmetry but preserves
SU(2)xSU(2). It is therefore possible to obtain a BKT
transition [40-42] to a quasi-long-range biexciton conden-
sate at finite temperature. We therefore focus on study-
ing the corresponding correlation function

Fig. 2 summarizes results of various ordering tenden-
cies for U = 5t, V = 6t and electron-hole chemical po-
tentials ranging from pu = Ot to p = 1.4¢, obtained with
a system of linear size L = 12 at inverse temperature
B = 12/t. At half-filling, the charge correlation function
S¢(q) shows a peak at ¢ = (w, 7), which implies CDW or-
der. As p increases and the two layers become electron-
hole doped, the (m,7) charge correlation peak is sup-
pressed, accompanied by a gradual increase in biexciton
correlations at ¢ = (0,0), indicating biexciton condensa-
tion (Bi-EC). The CDW and Bi-EC appear to compete.
Upon further increase of p, the electron doped layer even-
tually becomes fully filled and the system enters a band
insulator (BI) phase. Spin orders are absent throughout
the electron-hole chemical potential range we have stud-
ied. Fig. 2(a) shows S.(m,7), P.(0,0) and (n), the aver-
age electron density per site in the electron doped layer,
as functions of p. For three typical p values: 0t, 0.6t
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FIG. 3. (a) ps calculated for U = 5¢, V = 6t and electron-
hole chemical potentials ranging from pu = 0t to u = 1.4t for a
system of size L = 12. (b) P.(0,0) for the same parameters.
The grey dashed lines are guides to the eye, indicating the
same chemical potentials separating the phases as in Fig. 2(a).

and 1.2¢, density plots of P, and S, in momentum space
are presented in Fig. 2(b) and Fig. 2(c), respectively. At
= 0t, the (7, 7) CDW order gives rise to enhanced local
biexcitonic binding in real space, which results in a finite
and uniform distribution of P.(¢) in momentum space.
At p = 0.6t, the CDW order completely disappears and
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FIG. 4. (a) SF density ps calculated for U = 5t, V =

and p = 0.5t with system sizes from L = 10 to L = 16.
The black solid line is p = 2T /mw. The intercept of the black
solid line and SF density data points determines the BKT
transition temperature T;. (b) Plot of normalized correlation
L™7/4PY versus L/¢ = Lexp[—A/(T — T.)"/?] for A = 0.35
and T = 0.05 (units are omitted). A good data collapse is
especially achieved for L > 12. The unscaled plot of L™"/*P?
as a function of 8 can be found in the Supplemental Material.

a biexciton correlation peak emerges at ¢ = (0,0). Fi-
nally, p1 = 1.2¢ falls in the BI regime where (i) = 2, with
all ordering tendencies absent.

To confirm the existence of biexciton condensation and
extract the BKT transition temperature T, we have ex-
amined the superfluid (SF) density ps; and performed a
finite size scaling analysis on P.. Before proceeding, we
note that Bi-EC and SF refer to the same state of matter
here, with the U(1) symmetry of the phase factor 6 of A
broken. p, is defined by the classical action for phase
fluctuations:

= g/d%ps(VG)z, (7)

and is related to unequal-time current-current correlation

functions by [43, 44]
Ps (6A + AT G — 20A5%), (8)
0A, :qlrlgo A& (G2, gy = 0,wn = 0)
A (=0 g =0, ()
where

Aacx Z/ dTe—zqr anTAZL'Qf(r 7_)’ (10)
> Ga (T

o,0’

A (R T) = 7)J5.4/(0,0)). (11)

Here, j*, (7, T) is the x component of the current operator
for imaginary time 7 (see the Supplemental Material).

Fig. 3 compares ps and P.(0,0) as a function of x4 and
temperature. For p small (CDW) or large (BI), ps is al-
ways zero and independent of temperature. In contrast,
in the Bi-EC (SF) region, ps becomes finite and increases
upon increasing the inverse temperature [, which sig-
nals a transition of the system to a Bi-EC phase. The
slight dips of ps before the onset of Bi-EC are finite size
artifacts. Similar behaviors are found also in P.(0,0),
as shown in Fig. 3(b). The consistency between ps and
P.(0,0) establishes the reliability of the SF density calcu-
lation and further corroborates the existence of the Bi-EC
phase.

Next, we proceed to a finite size analysis and T, ex-
trapolation, following the method used in a previous
work which systematically determines the critical tem-
perature of superconductivity in the 2D attractive Hub-
bard model[45]. In numerical studies, a universal-jump
of the SF density is considered as a signature of a BKT
transition. Approaching T, from below, the following re-
lation is satisfied [46]:

7r

T. = = p,. 12
.= 5P (12)

Fig. 4(a) displays ps measured for U = 5t, V = 6t and
w = 0.5t, with linear system sizes up to L = 16 at temper-
atures down to T'= t/24. A clear jump of the value of pj
shows up for every system size upon decreasing temper-
ature and becomes more abrupt for larger system sizes.
p = 2T /x is plotted with a black solid line in Fig. 4(a);
the intercept of p = 2T /7w and p gives an estimation for
T, ~ 0.06t.

Another approach to extract T, is by finite size scal-
ing analysis of P.(0,0). For T' < T, the correlation
strength falls algebraically as (AT(M)A(0)) ~ |77
with n(T%.) = 0.25 at the transition temperature [41, 47].
For finite systems with L > 1 and T" — T, from above,
P.(0,0) follows the relation[48]

P.(0,0) = L*"T) £(L/¢), (13)

o [@—?w] | 4



T, is determined by adjusting A and T, until one reaches
optimal data collapse. For a faster convergence with
respect to system size, instead of P.(0,0) we perform
the analysis on the local correlation subtracted value
P = P.(0,0) — & S (AT (A7), which should fol-
low the same relation as P.(0,0) [Eq. (13)]. As presented
in Fig. 4(b), a good data collapse can be achieved with
A =0.35 and T, = 0.05t. The unscaled plot of L7/ P9
can be found in the Supplemental Material. We find
that the T, estimated by two independent approaches
are roughly consistent with each other and serve as con-
vincing evidence for a BKT transition to a Bi-EC (SF)
phase.

Discussion: In the strong coupling regime where
U,V > t and V — U > t, the low-energy physics of
the bilayer Hubbard Hamiltonian H can be captured by
an effective hard-core boson model

Hor = ~tyy_ala; + Vi afaf —py af  (15)
(i) (i) i

that constrains the local configuration of each site
to either two electrons in layer A or B, neglect-
ing charge fluctuations at finite V. In this basis,
spanned by hardcore boson operators a; = A(FZ)
[Eq. (5)], virtual hopping of fermions perturba-
tively generates nearest-neighbor boson repulsion V;, =

2 4 .
25t_U + (2‘/4:])2 {VEU + % — 2V8—U} and boson hopping

ty = =2t [ﬁ + %} respectively[49]. Finally, the

(V-U)?
electron-hole doping u enters equivalently as a chemical
potential for the hardcore bosons with up = 4u — 2V,
Refer to the Supplemental Material for details.

Competition between the CDW and Bi-EC orders can
thus be understood in terms of the well-known compe-
tition between checkerboard order and superfluid phase
in the hardcore boson model [50-52]. Importantly, this
picture indicates the stability of the Bi-EC in a wide pa-
rameter range at zero temperature. However, we em-
phasize that studying the high transition temperature
regime at intermediate coupling strength necessitates ac-
counting for significant charge fluctuations, beyond the
boson mapping, making a rigorous numerical analysis in-
dispensable.

Finally, it also is noteworthy that after performing a
particle-hole transformation on layer B, the electron-hole
bilayer Hubbard model maps onto an electron-doped bi-
layer Hubbard model with attractive inter-layer interac-
tion and repulsive on-site Coulomb interaction. In this
scenario, Bi-EC order corresponds to exotic charge-4e su-
perconductivity (SC). While exciton condensation and
charge-2e SC have been scrutinized both theoretically
and experimentally, Bi-EC and charge-4e SC remain rela-
tively under-explored, mainly due to the four-particle na-
ture of their order parameters, and are energetically less
favorable than their two-particle counterparts in most

cases. Recent developments include identification of Bi-
EC in a two-orbital ¢t — J chain[53] and exploration of
charge-4e SC using Majorana quantum Monte Carlo[54].

Conclusion: In summary we have developed a sign-
problem free DQMC algorithm for the bilayer Hubbard
model in the parameter regime |U| < V. With this tool,
we examined competition between spin, charge, and ex-
citonic orders on the square lattice. Remarkably, away
from the SU(4) point, we find convincing numerical evi-
dence for a biexcitonic condensate, which competes with
(m,m) charge order at finite electron-hole doping. We
have extracted the BKT transition temperature from the
superfluid density, as well as a finite size and temperature
scaling analysis of biexciton correlation functions, with
an estimate for T, ~ 0.05¢ —0.06¢. Finally, our algorithm
applies to any bipartite lattice including the honeycomb
lattice, and can be straightforwardly extended to include
magnetic fields and inter-layer hopping (see the supple-
mental material). Thus, this algorithm can be extended
to study the interplay of competing orders in a variety of
systems such as bilayer graphene. We expect that such
exact numerical studies of electron-hole condensates will
advance our understanding of quasiparticle condensation
in general, and ultimately may shed light on the strong
correlation driven mechanism behind Cooper pair con-
densation in unconventional superconductors.
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