
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Tunable Layer Circular Photogalvanic Effect in Twisted
Bilayers

Yang Gao, Yinhan Zhang, and Di Xiao
Phys. Rev. Lett. 124, 077401 — Published 19 February 2020

DOI: 10.1103/PhysRevLett.124.077401

http://dx.doi.org/10.1103/PhysRevLett.124.077401


Tunable Layer Circular Photogalvanic Effect in Twisted Bilayers

Yang Gao, Yinhan Zhang, and Di Xiao
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

(Dated: January 9, 2020)

We develop a general theory of the layer circular photogalvanic effect (LCPGE) in quasi two-
dimensional chiral bilayers, which refers to the appearance of a polarization-dependent, out-of-plane
static dipole moment induced by circularly polarized light. We elucidate the geometric origin of the
LCPGE as two types of interlayer coordinate shift weighted by the quantum metric tensor and the
Berry curvature, respectively. As a concrete example, we calculate the LCPGE in twisted bilayer
graphene, and find that it exhibits a resonance peak whose frequency can be tuned from visible
to infrared as the twisting angle varies. The LCPGE thus provides a promising route towards
frequency-sensitive, circularly-polarized light detection, particularly in the infrared range.

Recent years have seen a surge of interest in twisted
van der Waals heterostructures consisting of atomically
thin crystal layers. From a structural point of view,
twisted layers are interesting because not only are they
chiral, but their chirality can be readily controlled by
varying the twisting angle [1]. For example, bilayers with
opposite twisting angles are mirror images of each other,
therefore they possess opposite chirality. This structural
flexibility makes twisted van der Waals heterostructures
a versatile platform for investigating chirality-dependent
phenomena. One such example is the surprisingly strong
circular dichroism reported in twisted bilayer graphene
at large twisting angles [1–5].

In this Letter, we explore the consequence of structural
chirality of twisted van der Waals bilayers in nonlinear
optical effects. We show that a static, out-of-plane dipole
moment can be induced by circularly polarized light at
normal incidence [Fig. 1(a)], which we refer to as the layer
circular photogalvanic effect (LCPGE). We first derive a
general expression of the LCPGE coefficient, valid for
any quasi two-dimensional chiral bilayers. The LCPGE
has an elegant geometric interpretation: it consists of two
types of interlayer coordinate shift, weighted by the quan-
tum metric tensor and the Berry curvature, respectively.
In this regard, the LCPGE is distinctively different from
the bulk CPGE [6–9], and resembles more of the shift
current [10–15].

We then demonstrate the tunability of the LCPGE in
twisted bilayer graphene. We find that the LCPGE sig-
nal exhibits a resonance peak determined by three fac-
tors: the enhanced density of states, the quantum metric
tensor, and the finite interlayer coordinate shift. The
peak frequency can be tuned from visible to infrared
with decreasing twisting angle and, at the same time,
its magnitude increases sharply (Fig. 4). For example, at
about 2◦ twisting angle, for a circularly polarized light
at 250 meV with a power of 1 mW/µm2, the induced
voltage difference between the two layers is found to be
20 µV. These properties make the LCPGE in twisted bi-
layer graphene a promising candidate towards frequency-
sensitive, circularly-polarized light detection in the in-
frared range.
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FIG. 1. (a) Schematic illustration of the LCPGE. Circularly
polarized light induces a static out-of-plane dipole, whose di-
rection flips when the circular polarization of light is reversed.
Red and blue disks stand for negative and positive charges,
respectively. (b) Origin of the LCPGE. The incident light
excites an electron from the valence band to the conduction
band, while simultaneously causes a change in the dipole mo-
ment. Such a transition process is dependent on the light
chirality through the geometric factor βG in Eq. (5).

General Theory.—Let us consider a generic quasi two-
dimensional chiral bilayer, i.e., its structure lacks any
mirror plane and inversion center. The out-of-plane
dipole moment is represented by the operator p̂ = −eσz,
where the Pauli matrix σz operates in the layer index
subspace and we have set the distance between the two
layers to be unity. We further assume that the system
has an in-plane C2x axis, as is the case of twisted bilayer
graphene. The C2x symmetry forbids the existence of the
out-of-plane dipole in equilibrium.

Under normal incidence, the dipole 〈p̂〉 has the follow-
ing static component

〈p̂〉 = χij(ω,−ω)Ei(ω)Ej(−ω) , (1)

where Ei(±ω) = ±iωAi(±ω) with A(±ω) being the
Fourier components of the vector potential with frequen-
cies ±ω. We can decompose the response coefficient χij
into a symmetric part χs

ij and an antisymmetric part χas
ij .

Since p̂ is odd under C2x, χs
ij can only have off-diagonal

components. In addition, if there is a more-than-two-
fold rotational axis in the z-direction, χs

ij has to vanish.
In contrast, χas

ij transforms as a pseudoscalar, i.e., it is
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invariant under rotation, but flips sign under mirror re-
flection and space inversion. Therefore χas

ij is allowed as
long as the crystal structure is chiral.

The antisymmetric tensor χas
ij directly couples to the

handedness of light. This can be seen by recasting the
polarization 〈p̂〉 due to χas

ij into the following form

〈p̂〉 = β[iEx(ω)Ey(−ω)− iEy(ω)Ex(−ω)] , (2)

where β = −iχas
xy. The expression inside the square

bracket is proportional to the fourth Stokes parameter
which reflects the circular polarization of light.

The LCPGE coefficient β can be obtained as follows.
In the presence of an incident light, the Hamiltonian
reads Ĥ = Ĥ0 + ev̂ ·A with Ĥ0 the unperturbed Hamil-
tonian. Note that for nonlinear responses, the second
order perturbative Hamiltonian Ĥ(2) = 1

2 Γ̂ijAiAj is usu-

ally needed, with Γ̂ij = ∂v̂j/∂pi being the Hessian ma-
trix. However, this term does not contribute to χas

ij as

the matrix element of Γ̂ij always vanishes upon taking
the antisymmetrization of the index i and j.

We then solve the change to the density matrix up
to second order and use it to calculate 〈p̂〉. The de-
tails are left to the Supplemental Material [16]. Let
β = −e2β0/ω2; we find that β0 is given by a summa-
tion over three band indices,

β0 = −i
∑
`,m,n

∫
dk

(2π)2
(vy)m`(vx)`n − (x↔ y)

ωnm + iη1

× (G`n +Gm`)pnm ,

(3)

where (vα)m` and pnm are the velocity and dipole matrix
element in the band basis, respectively, ωnm = εn − εm,
and G`n = (f` − fn)/(ω`n − ω − iη2)− (f` − fn)/(ω`n +
ω−iη2) with fn being the Fermi-Dirac distribution. Two
phenomenological parameters η1 and η2 have been in-
troduced to take into account of various relaxation pro-
cesses.

Geometric origin.—We now reveal the geometric ori-
gin of the LCPGE. We first show that the intraband
contributions (εn = εm) in Eq. (3) vanishes. For non-
degenerate bands, εn = εm implies that n = m. In
this case, (vy)m`(vx)`m − (x ↔ y) is proportional to the
band-resolved Berry curvature (Ωz)m` [see Eq. (6) be-
low], which is odd under time-reversal. Since both the
band energy εn and the dipole moment pmm are even
under time-reversal, the integral in Eq. (3) vanishes for
intraband contributions. One can prove that the same
conclusion also holds for the degenerate case.

Next we consider the interband contributions (εn 6=
εm). If η1 � |ωnm|, we can approximate ωnm + iη1 ≈
ωnm. It is convenient to introduce an auxiliary Hamil-
tonian Ĥ0(λ) = Ĥ0 + λp̂ with λ being the layer poten-
tial difference. We can then write the interband dipole
moment as pnm = 〈un|p̂|um〉 = ωnm〈∂λun|um〉, where
eik·r|un(λ)〉 is the λ-dependent Bloch function of Ĥ0(λ).

TABLE I. Transformation properties of quantities in Eq. (5).

Tr gij Ωz Ras Rs

Mx,y + − − +

Mz + + − −
I + + − −

Insert this expression into Eq. (3) and let λ → 0 in the
end. We find that, in the clean limit (η2 → 0), β0 can be
written as a summation over only two band indices [16],

β0 = lim
λ→0

∑
`,n

∑
ξ=±1

∫
dk

(2π)2
ω2
`n(fn − f`)ξδ(ωn` + ξω)βG .

(4)
In Eq. (4), we have separated the contribution to β0 into
a spectral part, (fn − f`)δ(ωn` ± ω), whose integration
gives rise to the joint density of states, and a geometric
part ω2

`nβG with βG given by

βG = (Tr gij)n`(Ras)n` − (Ωz)n`(Rs)n` . (5)

We now explain the various terms in βG. The quanti-
ties (Ωz)n` and (gij)n`, defined by

(Ωz)n` = −2Im[〈un|i∂kxu`〉〈u`|i∂kyun〉] , (6)

(gij)n` = Re[〈un|i∂kiu`〉〈u`|i∂kjun〉] , (7)

have the meaning of the band-resolved Berry curva-
ture and quantum metric tensor, respectively. They
have the property that summing over one band index
will recover the full Berry curvature and quantum met-
ric in the other band, i.e.,

∑
` 6=n(Ωz)n` = (Ωz)n and∑

` 6=n(gij)n` = (gij)n [17, 18].
The quantities (Ras)n` and (Rs)n` are given by

(Ras,s)n` = 1
2 [(R+)n` ∓ (R−)n`] with

(R±)n` = ∂λ(φ±)n` − (aλ)n + (aλ)` , (8)

where (φ±)n` = arg(v±)n` is the phase of the velocity
matrix element v± = vx±ivy, and (aλ)n = 〈un|i∂λ|un〉 is
the Berry connection. Note that due to the appearance
of aλ, both R± and Ras,s are independent of the U(1)
gauge transformation of the Bloch state.

One immediately recognizes that the expression for R±
shares a striking similarity with the coordinate shift in
the shift current expression, with the latter given by
Rn` = ∂kφn` − (ak)n + (ak)` [10–14], where φn` =
arg(vx)n` and (ak)n = 〈un|i∂k|un〉. Since λ is conju-
gate to the dipole moment p, we can interpret R± as the
interlayer coordinate shift, which has the desired prop-
erty that it flips sign under mirror reflection Mz with
respect to the xy-plane. Thus the LCPGE can be in-
terpreted in terms of geometric quantities defined in the
(k, λ) parameter space: it consists of two types of in-
terlayer coordinate shifts, weighted by the band resolved
quantum metric and the Berry curvature, respectively.
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FIG. 2. The LCPGE coefficient β0 and the joint density of
states (jdos) in twisted bilayer graphene with twisting angle
θ = 21.8◦. β0 is in unit of e/h̄2. The joint density of states
is in units of 1/3a2 per electron volts with a being the lat-
tice constant of the bilayer graphene. The phenomenological
relaxation parameters are chosen as η1 = η2 = 0.02 eV. The
Fermi level is taken at the Dirac point.

The two-band formula in Eq. (4) and Eq. (5) also
provides a simple picture of the LCPGE as shown in
Fig. 1(b). Let us write the integrand of Eq. (4) as

ω2
`nβG = (W+)n`(p+)n` − (W−)n`(p−)n` , (9)

where (W±)n` = ω`n[(Trgij)n` ∓ (Ωz)n`] is nothing but
the oscillator strength of the left and right circularly po-
larized light for the transition from n-th to `-th band [19],
and (p±)n` = ω`n(R±)n` describes the change in the
dipole moment that occurs as an electron absorbs a chiral
photon. Therefore the LCPGE directly measures the dif-
ference in the induced dipole moment when the electrons
are excited by left and right circularly polarized light.

The geometric factor βG is fully compatible with the
point-group symmetry requirement of the LCPGE. The
Berry curvature transforms as a pseudovector, and the
trace of the quantum metric tensor Tr gij transforms as
a scalar. The phase factor φ+ and φ− transform in the
following way: φ+ → π+φ− and φ− → π+φ+ underMx,
φ+ → φ− and φ− → φ+ under My, and φ+ → φ+ + π
and φ− → φ− + π under inversion. Finally, ∂λ → −∂λ
under Mz and inversion. The transformation properties
of the geometric quantities in Eq. (5) are summarized in
Table I. We can see that βG is odd under chirality reversal
operations such as inversion and mirror operations.

Before closing this section, we wish to remark that even
though our LCPGE shares the same symmetry require-
ment as the out-of-plane component of the bulk CPGE,
their geometric origins are completely different. The bulk
CPGE is determined by the Berry curvature dipole [6–
9], while our LCPGE resembles more of the shift cur-
rent [10–15], and depends on both the Berry curvature
and the quantum metric tensor.

Twisted bilayer graphene.—We now apply our theory
of the LCPGE to twisted bilayer graphene. We begin
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FIG. 3. Geometric origin of the peak at 2.8 eV in Fig. 2. We
plot the band spectrum in (a), the quantum geometric tensor
(Tr gij)n` in (b) and the interlayer coordinate shift Ras in (c),
along the high symmetry line shown in black in the inset of
(a). In (a), we include the spectrum from 13-th to 18-th band.
The red and blue arrows in (a) show the optical transition
with a photon energy 2.8 eV, which are also shown as dots
in the inset plot of the Brillouin zone. For (Tr gij)n` and
(Ras)n`, we consider the quantities with n = 14 and ` = 15,
and with n = 13 and ` = 15, which correspond to the red and
blue transitions shown in (a). The blue and red dashed lines
in (b) and (c) are at the same position in the Brillouin zone
with the blue and red arrows in (a).

with an AB stacked bilayer graphene, then twist one of
the layers around a point where the top and bottom lat-
tice points overlap. At arbitrary twisting angle except
when θ = nπ/3, the resulting structure, whether com-
mensurate or incommensurate, always respects the chiral
D3 or D6 group [20–23].

The twisted bilayer graphene is modeled using a tight-
binding Hamiltonian at commensurate angles, following
the procedure outlined in Ref. [24]. To see the charac-
teristic behavior of the LCPGE, we choose the twisting
angle θ = 21.8◦, which contains 28 atoms in the unit
cell. We plot β0 as a function of the photon energy in
Fig. 2, calculated using Eq. (3). We can see that below
a threshold photon energy, β0 is approximately zero. It
then develops a sharp peak at around 2.8 eV, followed by
finite but oscillating behavior.

Three factors conspire to render the appearance of the
resonance peak in β0: a large joint density of states, a
peak in the geometric tensor (Tr g), and a finite shift
between layers (Ras). To demonstrate this, we first plot
the joint density of states (jdos) in conjunction with β0
in Fig. 2, which is defined by

jdos = Im

∫
dk

(2π)2

∑
m 6=n

fm − fn
ωmn − ω − iη2

. (10)

In the flat region where β0 is close to zero, the joint
density of states varies linearly, demonstrating the typical
behaviour of the two-dimensional Dirac point. As the
joint density of states rises sharply, so is β0. However, the
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FIG. 4. The peak position (black) and the corresponding po-
tential difference (red) generated by the LCPGE at different
twisting angles. We have assumed a laser power 1 mW/µm2.

first peak of β0 does not coincide with that of the joint
density of states, although there are synchronized but
much weaker peaks at higher energies. This shows that
even though the increased density of states contributes
to the enhanced β0, it is not the only factor.

We now reveal the geometric origin of the peak. In
Fig. 3(a), we plot the energy bands along high symmetry
lines as shown in the inset of Fig. 3(a) in the Brillouin
zone of the supercell and label the optical transition re-
sponsible for the peak in β0. We can see that the band
dispersion around the Dirac point ceases to be linear at
the M -Γ line that bisects the two Dirac points. On this
line a local band edge is developed, rendering a relatively
flat region, which hosts the optical transition for the peak
in β0 and is responsible for the sharp rise of the joint
density of states shown in Fig. 2. This will provide am-
ple initial and final states for the optical transitions and
hence amplify the magnitude of β0.

In Fig. 3(b) and (c), we plot the quantum metric tensor
and the layer shift Ras corresponding to the two transi-
tions labeled in Fig. 3(a). We find that near both transi-
tions, the shift Ras is close to −π without much variation,
while the quantum metric tensor experiences peaks which
eventually leads to the peak in β0. This turns out to be
the dominant geometric contribution to the LCPGE peak
since we have found that there is no contribution from
the second term in Eq. (5) as the Berry curvature van-
ishes for the two bands involved in the optical transition.
This is due to the 2D Dirac point with a vanishing band
gap. We expect this contribution to appear in twisted
transition metal dichalcogenides.

The appearance of the resonance peak in the LCPGE
is a general feature of twisted bilayer graphene. As shown
in Fig. 4, the resonance frequency varies from visible to
infrared as the twisting angle decreases from 22◦ to 2◦.
This is expected because the twisting angle controls the
energy where the Dirac cones from the top and bottom
layer intersects, at which the LCPGE becomes apprecia-
ble. Figure 4 also shows the induced voltage difference

FIG. 5. The real-space resolved layer potential difference (µV)
induced by the LCPGE in the moire supercell at the twisting
angle θ = 2.87◦ and the peak frequency ω = 0.34 eV.

between the two layers, calculated from V = 〈p〉/ε0 with
ε0 the vacuum permittivity. We can see that the volt-
age increases considerably with decreasing twisting an-
gles, owing to the decreasing peak frequencies and the
prefactor 1/ω2 in β. The LCPGE signal can be further
enhanced in multilayer chiral stacked structures.

Finally, we plot the real-space map of the induced layer
potential in Fig. 5 at θ = 2.87◦ (details given in the Sup-
plemental Materials [16]). We see that the potential is
almost uniform throughout the entire unit cell with mod-
erate variation, with minima near the AA-stacked region
and maxima near the AB/BA-stacked region. Note that
the potential never changes sign. Therefore if there is
moderate lattice relaxation or strain, we do not expect
any cancellation effect, and the LCPGE should be a rel-
atively robust effect against relaxation. On the other
hand, it has been shown that for twisting angle smaller
than 2◦, the lattice relaxation changes the band struc-
ture significantly [25], and we leave the LCPGE in this
situation for future study.

In general, a twisted bilayer is specified by both its
twist angle and relative shift between the two layers. We
have found that at θ = 21.8◦, the LCPGE signal shows
some, but not strong dependence on the relative shift
(See Fig. S2 in the Supplemental Materials [16]). This
behavior is similar to that in the circular dichroism in
the same structure [5].

To experimentally measure the induced dipole mo-
ment, a possible approach is the compressibility measure-
ment using the capacitance method [26, 27] or a scanning
single electron transistor [28]. In the former method, a
10 µV voltage across bilayers can translate to a sizable
gate voltage on the order of mV. In the latter method,
µV voltage is directly accessible [28]. Interaction with
substrate can break the C2x symmetry assumed earlier
and induce a dipole moment in equilibrium. In exper-
iments, this can be discounted by taking the difference
between the signals with and without light, or lights with
opposite circular polarization.

In summary, we have studied the layer circular photo-
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galvanic effect in quasi-two-dimensional chiral materials,
and revealed its geometric origin. This geometric view
offers a route to designing nonlinear optical chiral ma-
terials. The calculated LCPGE coefficient in twisted bi-
layer graphene exhibits a highly tunable resonance peak
as a function of the twisting angle and photo energy,
which may be useful for frequency-sensitive, circularly-
polarized light detection, particularly in the infrared
range.
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