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We present a novel view of the standard model of tunneling two level systems (TLS) to explain
the puzzling universal value of a quantity, C ∼ 3 × 10−4, that characterizes phonon scattering
in glasses below 1 K as reflected in thermal conductivity, ultrasonic attenuation, internal friction,
and the change in sound velocity. Physical considerations lead to a broad distribution of phonon-
TLS couplings that (1) exponentially renormalize tunneling matrix elements, and (2) reduce the
TLS density of states through TLS-TLS interactions. We find good agreement between theory and
experiment for a variety of individual glasses.

Amorphous solids are ubiquitous and technologically
important, yet they still hold mysteries such as the uni-
versal values of phonon scattering. Below 1 K, phonon
scattering reflected in the thermal conductivity (scaled
with natural units) [1], the internal friction (in the relax-
ation regime) [2], the change in the sound velocity, and
the resonant ultrasonic attenuation [3] are quantitatively
very similar, regardless of the insulating glassy material.
This universality is quite surprising, and, though it has
been known for quite some time, remains a puzzle. Why
does phonon scattering in these materials show such a
lack of sensitivity to their composition and structure?
The standard model of tunneling two level systems

(TLS) [4, 5] qualitatively describes the behavior of glasses
below 1K. It postulates the existence of independent en-
tities that tunnel between the two minima of a double
well potential with a wide distribution of tunneling ma-
trix elements and energy asymmetries. However, this
model does not quantitatively explain the measurements
cited above that depend on the coupling of phonons to
tunneling two level systems (TLS). In particular, these
measurements all find a rather universal value for a di-
mensionless coupling constant, C, given by

C =
P̄ γ2

ρv2
(1)

where P̄ is the density of states of tunneling entities, γ is
the strength of their coupling with phonons, ρ is the mass
density of the material and v is the sound velocity given
by v−3 = 1

3

∑

s v
−3
s , where vs is the sound velocity for po-

larization s. Within the TLS model, the internal friction
Q−1 is given byQ−1 = π

2C, while the change in sound ve-
locity in the relaxation regime is ∆v/v = − 1

2C ln(T/To)
where To is an arbitrary reference temperature. Finally,
the scaled thermal conductivity [1] is universal because it
depends on ratio of the mean free path ℓ of a phonon to
its wavelength λ in the following way: ℓ/λ = 1/(2π2C).
Measurements of these quantities find values of C be-
tween 2× 10−4 and 5× 10−4. The universal value of C is
quite surprising given that the parameters entering C are
nominally independent and vary significantly from glass
to glass. A universal value for this quantity thus implies
a degree of coincidence that strains credulity, as noted by

Leggett [6]. Another surprise is the energy scale of the
coupling between the sound waves and the TLS which
is about 1 eV in insulating glasses, an energy scale that
does not match any other in the problem.

Yu and Leggett [7] (YL) made the first attempt
to understand this coincidence. They assumed that
phonon mediated interactions between TLS dominate the
physics. While their mean field scenario did indeed ex-
plain the universality, the predicted universal value for
C is of order 1, whereas the observed value is 10−4. This
failure of a simple mean field theory approach is rather
surprising. What determines the value for C? A variety
of rather complicated approaches have been proposed to
resolve this question [8–11]. These include renormaliza-
tion group approaches [8, 11], a random first order phase
transition associated with the glass transition [9], two
different types of TLS that couple differently to phonons
[12], and vibrational instability of harmonic oscillators
associated with the boson peak [10]. These models have
been able to arrive at the right order of magnitude for
C, but the use of a variety of assumptions and estimates
have precluded the ability to predict the value of C for
different specific glasses.

We propose a novel explanation based on three aspects
implicit in the standard TLS model that were ignored in
the original model [4, 5] and were only partially consid-
ered subsequently. First, the coupling between phonons
and TLS implies that the TLS can interact with each
other [7]. Second, this coupling produces an exponential
renormalization of the tunneling matrix element due to
phonon overlap between the two wells (a kind of polaron
effect) [13]. Third, phonons actually couple to the differ-
ence between the elastic dipole moments in the two wells.
If the elastic dipole moment in each well has a random
orientation, the difference will also be random and will
vary from TLS to TLS, leading to a broad distribution of
couplings γ. Our model explains the universal value of C
as well as the observed (∼ 1 eV) value of the TLS-phonon
coupling at low frequencies.

We begin by introducing the model for a set of enti-
ties that can tunnel between two states, e.g., “right” and
“left” well, randomly distributed in an elastic medium
and interacting with phonons:
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H = Hph +
1

2

∑

i

(εiσ
z
i +∆o

iσ
x
i ) +

1√
V

∑

ik

γiǫ
i
kσ

z
i (2)

where the free phonon Hamiltonian Hph =
∑

ks h̄ω(ks)ψ
†
ksψks. ψ

†
ks and ψks are the phonon creation

and anihilation operators for wavevector k and polar-
ization s, and ω(ks) is the phonon dispersion relation
[14]. εi is the energy asymmetry between the two wells
and ∆o

i is the tunneling matrix element of the ith TLS.
In the TLS-phonon interaction (last term in Eq.(2)),

ǫik =
∑

s ξks(i)ψks+ξ
∗
ks(i)ψ

†
ks represents the scalar strain

field, where ξks(i) = i
√

h̄ω(ks)
2ρv2 (

∑

abD
i
abe

s
ab(k))e

ikri and

γiD
i
ab is the TLS elastic dipole moment with strength

γi shown as an explicit factor. ρ is the density of the
material. esab(k) =

1
2 (k̂aê

s
b + k̂bê

s
a), k̂ is the unit wavevec-

tor and ê is the polarization unit vector. ri denotes the
position of the ith TLS, and σx,z

i are Pauli matrices. For
simplicity we ignore the distinction between transverse
and longitudinal TLS-phonon couplings.
Our model differs from the standard one in the distri-

butions of the parameters εi, ∆
o
i and γi. In the standard

model, the energy asymmetry between the right and left
wells, εi, and the tunneling matrix element ∆o

i are as-
sumed to vary from site to site such that the probability
per unit volume to find a TLS with a given value of εi
and ∆o

i is:

P (ε,∆o) = P̄ /∆o (3)

with 0 < ε < εmax, and ∆o
min < ∆o < ∆o

max. P̄ =
no/(εmax ln(∆

o
max/∆

o
min)), and no is the density of TLS

per unit volume. Typically, P̄ is an adjustable parameter
fitted to experiments. The distribution of tunneling pa-
rameters is assumed to arise from a flat distribution of the
tunneling barrier heights [4]. The coupling to phonons is
chosen to be identical for all TLS, i.e., γi = γ, and is
used as a fitting parameter. The final assumption is that
the interaction term between TLS and phonons is small,
permitting the use of perturbation theory to compute the
quantities above [15].
In contrast to the standard model, we note that the

phonon-TLS interaction implies that TLS can interact
with one another via the strain field [7, 13]. To effect this,
we integrate out the phonons with energies higher than
the tunneling matrix elements, i.e., h̄vkm > ∆max

o ∼
10 K. (The precise value of ∆max

o is not critical since it
ultimately only enters logarithmically.) The result of the
integration is [16]:

H = Hph,k<km
+

1
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/γ2
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z
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(4)

where

γo =

√
2

3

√

ρv2voh̄ωD (5)

and vo is a unit volume of the chemical formula unit of
the glass as would be used to define a Debye frequency,
ωD [1]. The third term shows that the tunneling matrix
element has been renormalized downward by a polaron
effect [13] in which the overlap of the phonon wavefunc-
tions between potential wells exponentially reduces the
effective tunneling. Unlike the standard model where
the tunneling depends on the WKB exponent that in-
corporates the barrier height, in our model the exponent
of the tunneling matrix element depends on the TLS-
phonon coupling γi. The fourth term contains the re-
maining TLS-phonon interaction which is weak and can
be treated with perturbation theory as in the standard
model. The last term shows that a TLS-TLS interaction
term has been generated which is quite complex due to
the tensorial nature of elastic dipole moments. Follow-
ing YL, Jij is simplified to Jij = 1

ρv2 siγisjγj/r
3
ij where

rij is the distance between TLS i and j, and si = ±1
is a spin representation of the orientation of the elastic
dipoles (see [17] for the full expressions).
To motivate our second assumption, let us review why

the YL scenario failed to give the correct value of C.

YL assumed γi = γ ∀i so that Jij = γ2

ρv2 sisj/r
3
ij in Eq.

(4). The 1/r3 interactions together with a simple random
mean field theory produces a density of states indepen-
dent of the original density of TLS given by:

P̄ ≈ ρv2

γ2
(6)

If we plug this into the expression for C, Eq. (1), we get
C ∼ 1; universal but 4 orders of magnitude too large.
In addition, P̄ is two orders of magnitude too large com-
pared to the density of states from specific heat measure-
ments. P̄ could be reduced by increasing the strength of
the interactions γ but this will not solve the C ∼ 1 prob-
lem if the same value of γ controls the attenuation of low
frequency phonons.
To fix this problem, we note that contrary to the stan-

dard model, the coupling between TLS and phonons
should actually have a broad distribution. To see why,
note that in Eq. (2), the TLS elastic dipole moment cou-
ples to the phonons via a σz term, so that it is the dif-

ference between the dipole moments in the right and left
wells of the TLS that couples to the strain field. Assume
now that the dipole moment in each well has the same
magnitude (γmax), but a different orientation. The differ-
ence between the dipole moments in the two wells is itself
a dipole moment with magnitude γ. For two randomly
oriented vector dipoles, the magnitude of the difference
vector will have a uniform distribution P (γ2) = 1/γ2max

[16]. The case of elastic tensor dipoles is more difficult
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but leads to a similar distribution, albeit with an increase
in probability for large values of γ (see [16]).
The maximum possible value of the coupling, γmax, is

taken to be larger than the γ inferred from acoustic ex-
periments, leading to stronger interactions between TLS
and hence, a lower density of states P̄ . In addition,
these random TLS-phonons couplings produce a wide
distribution of tunneling amplitudes due to the factor,
exp (−γ2i /γ2o), multiplying ∆max

o . TLS with large values
of γi have very small tunneling rates so they will not be
seen, e.g., in internal friction measurements. (The choice
of a single value ∆max

o for the tunneling matrix element
prefactor is based on the view that while glasses have
no obvious order, any region is very similar to any other
[18].)
The next step is to approximate the TLS-TLS interac-

tion term in Eq. (4) using a poor man’s random mean
field theory [16]. The effective field felt by a given TLS is
the sum of the fields from all the surrounding TLS, most
of which are ’frozen’ at low temperature: εi ≡ εi(Jij =
0) +

∑

j 6=i Jijσ
z
j . Since we assume that the local asym-

metry variations are small compared to the interactions
between TLS, we can neglect the εi(Jij = 0) term so that
the asymmetry energy εi arises entirely from interactions.
If we assume the σz

j to be uncorrelated, the sum will have
approximately a Gaussian distribution with zero mean
(the Jij are equally positive and negative). The variance

is given by: V ar(εi) ≈ (
γ2

max

2ρv2 )
2( 4π

3Vo

)2 where Vo is the av-
erage volume per rearranging region. For energies small
compared to the variance, the Gaussian distribution is
essentially flat and thus the probability of finding a TLS
with a given (small) εi is P (εi) ≈ 3ρv2Vo/(2π)

2/3γ2max.
The density of states per unit energy and unit volume is
then simply [16]:

ño ≈ ρv2/3γ2max (7)

With this random mean field approximation, the
Hamiltonian in Eq. (4) reduces to that of an indepen-
dent TLS model. The effect of interactions between TLS
has been subsumed into no, the distribution for the en-
ergy asymmetry per unit volume which is now expressed
in terms of material parameters. Together with the dis-
tribution of γ, P (γ2) = 1/γ2max, and the expression for

∆o, ∆o ≡ ∆o
maxe

−γ2/γ2

max , we have an independent TLS
model quite similar to the standard model. The key dif-
ference is that γ controls the value of the tunneling ma-
trix element ∆o in addition to the coupling between TLS
and phonons. It is more convenient to change variables
from (ε and γ) to (ε and ∆o). This gives:

P (ε,∆o) =
P̄

∆o
(8)

where

P̄ =
1

3

ρv2

γ2max

(
γo
γmax

)2 (9)

γ is now given in terms of ∆o by:

γ = γo ln
1/2

(

∆o
max

∆o

)

=

√
2

3

√

ρv2voh̄ωD ln1/2
(

∆o
max

∆o

)

(10)
Let us bring all the pieces together and write our ef-

fective non-interacting Hamiltonian:

H = Hphonon +
1

2
εσz +

1

2
∆oσx +

∑

k<km

γ(∆o)ǫkσ
z (11)

where γ is an explicit function of ∆o given by Eq. (10)
and the distribution of parameters is given by Eq. (8).
Experimental quantities of interest should be computed
with these expressions, though it is easier to do so by
simplifying Eq. (10) for γ as follows. With ∆o

max ∼ 10

K, ln1/2(
∆o

max

∆o ) in γ varies from about 1.5 for ∆o = 1K
to about 5 for ∆o = 5 × 10−11K (which corresponds to
an oscillation time of 1 second). Since ∆o dictates which
TLS can respond on an experimental timescales, γ can
be replaced by γeff = αγo with α equal to some constant
in the range from 1 to 5. For concreteness, we will use
α = 2.5.
With this simplification, we can now use Eq. (1) to

calculate C with γ = γeff and Eq. (9) for P̄ to obtain:

C = P̄
γ2eff
ρv2

=
α2

3
(
γo
γmax

)4 (12)

The last step is to estimate γmax which requires going
beyond elasticity. On general grounds, we expect γmax ∼
aρv2vo with a < 1 being a material independent constant
[19]. Using elastic stability criteria in disordered systems
yields a better estimate [20]:

γmax =
4

3
(
2

9π
)2/3ρv2vo ∼ 0.23ρv2vo (13)

This and other ways to estimate γmax are further dis-
cussed in the Supplemental Material [16].
Table I shows the values of C obtained from Eq. (12)

using Eq. (13) for γmax for the insulating glasses for
which we have all the required data. We have used

kbTD = h̄ωD = h̄v(6π
2

vo
)1/3. vo is obtained from the

material’s chemical formula (see ref. 16 in [3]) using
vo = M/NAρ where M is the molecular mass and NA

is Avogardo’s number. The only independent parame-
ters are ρ, vl, vt and vo. The theory has no adjustable
parameters.
While the overall comparison between theory and ex-

periment are good, the discrepancies call for a discus-
sion. First, we did not distinguish between longitudinal
and transverse modes. Given that experimentally [3] the
ratio γ2l /v

2
l ≈ γ2t /v

2
t and that it is the ratio that mat-

ters for the TLS-phonon interaction, the errors from this
approximation should not be large. In particular, this
approximation cannot explain the large discrepancy for
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Glass ρ [kg/m3] v [m/s] vo [Å3] TD [K] Cexp · 104 Cth · 104

SiO2 2200 4163 45.3 348 2.9 2.9

BK7 2510 4195 41.8 360 3.3 2.5

SF4 4780 2481 40.7 215 2.75 0.9

SF57 5510 2327 55.2 182 2.98 0.9

SF59 6260 2131 40.2 185 2.78 1.0

V52 4800 2511 61.1 190 4.9 0.8

BALNA 4280 2569 39.9 224 4.8 1.2

LAT 5250 3105 68.2 226 3.7 0.3

Zn-glass 4240 2580 45.9 215 3.6 2.0

PMMA 1180 1762 138.4 101 3.7 2.9

TABLE I. C for dielectric glasses computed from Eq. (12).
Data from [3].

LAT between Cth and Cexp because Cth for LAT is 10
times lower than Cth=Cexp for SiO2, even though the
experimental difference between γl,t and vl,t for the two
materials is not large. A more likely source of the discrep-
ancies is our estimate of the volume vo of the molecular
formula unit which enters into the Debye temperature
and is not well defined. One possibility is to consider vo
as the one adjustable parameter of the theory.

In short, the broad spectrum of TLS-phonon couplings
γ produces a distribution of tunneling parameters ∆o,
many with values too small to contribute to ultrasonic
measurements due to the exponential dependence of the
tunneling on γ2. The TLS that have tunneling ampli-
tudes large enough to participate in ultrasonic experi-
ments result in estimates of γ of order 1 eV. This observed
energy scale for γ is consistent with γ ∼

√

ρv2voh̄ωD

from Eq. (10). For example, using values appropriate
for SiO2 (ρ = 2200 kg/m3, v=4200 m/s, vo = 45× 10−30

m3 and h̄ωD = 350K), we find γ ∼ 0.57 eV, in close
agreement with the experimental values of γ between 0.65
and 1 eV [3]. On the other hand, P̄ is determined by
the interaction between TLS, regardless of the amount
of tunneling suppression. Eq. (9) shows that the scale
of P̄ is dictated by ρv2vo and γmax, and hence is lower
than what is found using Eq. (6) with the ultrasonic
value γeff . This is why Q−1 ∼ 10−4 is so much smaller
than in the orginal YL approach. It should be possible
to experimentally probe the distribution of γ for TLS
that couple to superconducting qubits and are altered by
strain [22].

Finally, since our effective Hamiltonian in Eq. (11)
and the form of P (ε,∆o) in Eq. (8) reduce to those of
the standard TLS model, all the results of the standard
model carry over with, at most, logarithmic temperature
corrections of those quantities that depend on the TLS-
phonon coupling since γ has a logarithmic dependence on
∆o as shown in Eq. (10). In particular, the specific heat
has the same temperature dependence as in the standard
TLS model. The thermal conductivity κ at low tem-

peratures is limited by the scattering of phonons from
TLS resulting in a logarithmic temperature correction:
κ ∼ T 2/(1 + 2 ln(∆o

max/2kBT )).

Everything discussed so far applies for temperatures
below 1K. Let us briefly discuss what happens above
kbT = ∆o

max ∼ 10 K. The following estimate shows that
the tunneling barrier height V is comparable to ∆o

max.
If we ignore the effect of phonons on tunneling, the bare
tunneling matrix element is given in the WKB approxi-
mation by:

∆o
max = h̄ωDe

−
√
2MV d/h̄ (14)

Solving for V with h̄ωD ∼ 350K yields
√
2ρvoV d/h̄ =

ln(35). Using the numbers for SiO2 with the barrier
height V in Kelvin and d in Å, we get 1.6

√
V d ∼ ln(35),

which means that V ∼ 5K for d = 1Å and V ∼ 20K for
d = 0.5Å. Thus, it is plausible that the barrier height
is in the 1-30K range which corresponds roughly to the
temperature where there is the plateau in the thermal
conductivity and the boson peak in the specific heat.

At temperatures much greater than the barrier height,
thermal fluctuations make tunneling and the tunnel bar-
rier irrelevant. So tunneling no longer reduces the den-
sity of states and thus, for kbT >> V , we have P̄ = ño =
ρv2

3γ2
max

. ∆o decouples from γ and the relevant coupling to

phonons is the average of γ2 which is γ2max/2. Therefore,
in this regime, C = P̄ 〈γ2〉/ρv2 = 1/6 and is universal.
The ratio of the mean free path to the wavelength be-
comes:

ℓ

λ
=

1

2π2C
∼ 0.3 (15)

This is observed in the thermal conductivity in the tem-
perature range above the plateau [1]. The intermediate
temperature regime (∼ 3 − 10 K) corresponding to the
plateau is very much material dependent and other pro-
cesses come into play here [23].

In conclusion, we have elucidated aspects implicit in
the standard TLS model that include strongly interacting
TLS [6, 7, 13], exponentially renormalized tunneling ma-
trix elements [13], and a heretofore unrecognized broad
distribution of TLS-phonon couplings. This produces the
correct order of magnitude for Q−1 and the coupling γ
seen in acoustic experiments. Variations in the predicted
values of Q−1 from material to material are only slightly
larger than in experiments. At high temperatures, where
tunneling is irrelevant, we predict ℓ/λ ∼ 1, consistent
with thermal conductivity experiments.
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