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Hierarchy of crystal lattice instabilities leading to a first-order phase transformation (PT) is
found, which consists of PT instability described by the order parameter and elastic instabilities
under different prescribed stress measures. After PT instability and prior to the elastic instability,
an unexpected continuous third-order PT was discovered, which is followed by a first-order PT after
the elastic instability. Under prescribed compressive second Piola-Kirchhoff stress, PT is third-order
until completion; it occurs without hysteresis and dissipation, properties that are ideal for various
applications. For heterogeneous perturbations and PT, first-order PT occurs when the first elastic
instability criterion (among criteria corresponding to different stress measures) is met inside the
volume, surprisingly independent of the stress measure prescribed at the boundary.

Introduction.—Theoretical description of the mechan-
ical stability of a crystal lattice is one of the essential
bases for understanding the structural transformation
in solids. The loss of stability of crystal lattice causes
structural transformations such as martensitic/displacive
PTs, melting, amorphization, twinning, dislocation nu-
cleation, cavitation, and fracture [1–7]. Therefore, the
crystal lattice instability criteria have fundamental im-
portance. However, despite the numerous previous works
in this direction, there are several outstanding problems
to be resolved when instability occurs at finite strains.

The authors of the general elastic instability criteria for
finite strains [8, 9] expressed them in terms of arbitrary
measures of stress and work-conjugate strain and empha-
sized that the instability criteria depend on the chosen
(prescribed) stress/strain measure. Since for heteroge-
neous solutions of a boundary-value problem, stress ten-
sors can only be prescribed at the external boundary, it
is impossible to define which stress measure is prescribed
at each material point, i.e., elastic instability is ambigu-
ous. For applications practically all instability criteria
are formulated in terms of the Cauchy stress [1–3, 10–
12] without justification. Other approaches discussed in
the text books, e.g. [13], define elastic instability based
on loss of positive definiteness of some tensors of elastic
moduli (generalizing Born’s work [14] for finite strains)
or of acoustic tensor [15] (generalizing Hadamard’s work
[16]). They include in particular conditions for loss of
ellipticity of the elastostatic equations [17]. Since elas-
tic moduli and acoustic tensor depend on the choice of
strain and stress measures, this leads to a similar ambi-
guity. Different criteria are collected and compared e.g.
in [9, 18]. In mathematical literature on martensitic PTs
[7, 17], loss of stability is necessary for development of
martensitic and twinned microstructure.

The alternative approach to the material instability
was based on the utilization of the order parameters de-

scribing PTs in the spirit of the Landau theory [4]. PT
instability criterion for a homogeneous equilibrium phase
under spontaneous variation of the order parameters was
derived in [19, 20] using phase-field approach (PFA) to
the first-order PTs under large strains and applied stress
tensor. This criterion is linear in the normal components
of the Cauchy stress tensor, which is confirmed by atom-
istic simulations for PTs Si I↔Si II [10–12] and graphite-
diamond [21].

In this letter we resolve some outstanding problems
in the crystal lattice instability. Initially, we consider
homogeneous perturbations and PT process under pre-
scribed homogeneous stress measure. As it was mathe-
matically proven in [19, 20], the PT instability criteria
are independent of the stress measures. We found here
that they occur at the same strain. This is not the case
for elastic instability. That is why one has a hierarchy of
lattice instabilities corresponding to PT instability and
elastic instabilities under various prescribed stress mea-
sures. When under prescribed stress measure the PT in-
stability occurs prior to the elastic instability, new type
of PT was discovered. There is no jump in strain and or-
der parameter, which occurs for the first-order PT. The
equilibrium values of the order parameter, correspond-
ing to stable elastic equilibrium, continuously vary with
varying stresses, until elastic instability is reached. This
PT is third-order in this stress range (see Supplemental
Material [22]), with the equilibrium structure Siin corre-
sponding to the intermediate structure along the initial
part of the original transformation path for the first-order
PT. When elastic instability is reached, the first-order
PT Siin↔Si II occurs. Since the second Piola-Kirchhoff
stress (PK2S)-strain curve under compression does not
possess elastic instability point, PT under the prescribed
PK2S is a third-order PT until completion, and occurs
without hysteresis and dissipation under cyclic loading,
properties that are ideal for various applications. This
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opens the possibility of controlling PT order and proper-
ties by controlling prescribed stress measures.

For heterogeneous perturbations and PT process,
stresses are prescribed at the boundaries only. After
satisfying PT instability criterion and continuous third-
order PT, first-order PT to the product phase occurs
when the first elastic instability criterion (among criteria
corresponding to different stress measures) is met inside
the volume, independent of the prescribed stress measure
at the boundary.

We designate contractions of tensors AAA and BBB over
one and two indices as AAA···BBB = {Aij Bjk} and AAA:::BBB =

Aij Bji; III is the unit tensor; the transpose of AAA is AAAT

and the inverse of AAA is AAA−1. Deformation gradient FFF =
FFF e · UUU t(η), mapping crystal from an undeformed into a
deformed configuration, is multiplicatively decomposed
into elastic FFF e and transformational UUU t parts; UUU t maps
the stress-free crystal cell of the parent phase to that of
the transforming phase; η is the order parameter which
varies from 0 for parent phase to 1 for product phase.
Lagrangian strain is EEE = 0.5(FFFT ·FFF − III).

Phase transformation instability.— Instability of the
homogeneous equilibrium state of a phase under homo-
geneous perturbations can only be analyzed when a par-
ticular stress measure is prescribed at the boundary.
It does not mean that the Cauchy (true) stress σσσ or

the first Piola-Kirchhoff stress (PK1S) PPP = Jσσσ · FFF−1T

(force per unit undeformed area), which directly partici-
pate in the boundary conditions, can only be prescribed;
here J = detFFF . Any other stress measure can be pre-
scribed with the proper feedback and control of σσσ or
PPP in the experiment or atomistic simulations [22]. We
will also use the Kirchhoff stress τττ = Jσσσ and the PK2S
TTT = FFF−1 · PPP = JFFF−1 · σσσ · FFF−1T . We will start with
prescribed PPP .

PT instability for the thermodynamic equilibrium
value η = 0 occurs and PT starts when the driving force
X for change in η in Ginzburg-Landau equation (see [22])
is getting positive and η grows. General PT criterion
that follows from this definition is derived in [20]. For
cubic-to-tetragonal PT under action of three normal-to-
cubic-faces Cauchy stresses σi, this criterion is simplified
to

(σ1 + σ2)εt1aε1 + σ3εt3aε3 ≥ (A+ 3∆ψθ)/Je, (1)

where εti are components of the transformation strain
εεεt = UUU t(1) − III, Je = detFFF e, and aε, A, and ∆ψθ are in-
terpolation constants in expression for UUU t(η), the magni-
tude of the double-well barrier, and jump in the thermal
energy, respectively. This instability criterion was cali-
brated and verified for Si I↔Si II PTs [23] using results
of atomistic simulations [11, 12].

Elastic instability is defined based on practical meth-
ods used in experiments or simulations. If for equilibrium
state under chosen fixed prescribed stresses at the bound-

FIG. 1. Equilibrium stress-strain curves for homogeneous de-
formation of Si in the third spacial direction in which a strain-
controlled compressive loading is applied at σ1 = σ2 = 1 GPa.
Hierarchy of PT and elastic instability points are shown by
markers. Intermediate phase of Si between points of PT and
elastic instability, which appears via third-order PT, is des-
ignated as Siin. P̄ is the prescribed stress for problems de-
scribed below.

ary for some spontaneous perturbations of the deforma-
tion gradient ∆FFF mechanical equilibrium cannot be kept,
then such a state is unstable. For homogenous states and
perturbation, such an instability criterion results in the
criterion presented in [8]. It is demonstrated that elas-
tic instability conditions depend on the prescribed stress
(and work-conjugate strain) measure [8, 9]. We study
the relationship between PT and elastic instability con-
ditions for different prescribed stresses using PT between
semiconducting Si I and metallic Si II using the PFA pre-
sented in [20, 22, 23]. To model homogeneous processes,
we consider the solution for a single cubic finite element.
Elastic energy is ψe = 0.5EEEe : CCC(η) : EEEe, where CCC is
the fourth-order elastic moduli tensor, which leads to lin-
ear relationship TTT = CCC(η) : EEEe. Other stress measures
are nonlinearly related to EEEe. To initiate PT, an initial
value η = 0.01 is prescribed, and η cannot evolve below
0.01. We apply σ1 = σ2 = 1 GPa and perform slow
strain-controlled compressive loading in the third direc-
tion, meaning that for each strain η reaches stationary
value. Stress - strain E3 curves are shown in Fig. 1 for
four stress measures. They are the primary information
for the analysis of instability for heterogeneous processes
as well as for the case of stress-controlled loading. The
strain-controlled homogeneous loading does not allow the
instability to occur spontaneously.

For all stress measures, PT instability occurs at the
same strain (Fig. 1). This explains how PT instability is
independent of the prescribed stress measure.

For small strains, analytical expression for equilibrium
stress-order parameter (obtained from condition X = 0
for η varying from 0 to 1) and corresponding stress-strain
curve describe reducing stress during PT [24]. That is



3

why when PT starts at fixed stress, it continues to com-
plete until stress is equilibrated at the elastic branch of
the product phase. In contrast, for finite strain in Fig.
1 after PT instability, each stress measure continues to
grow and reaches maximum (except TTT ) corresponding to
elastic instability at corresponding prescribed stress and
different strains for different stress measures. Indeed, at
prescribed stress corresponding to maximum point pos-
itive perturbation ∆E3 leads to reduction in elastic re-
sistance and unstable deformation-transformation until
PT completion and equilibration of prescribed stress at
elastic branch of the product phase. This is further an-
alyzed considering stress-order parameter curves under
three different prescribed stress measures (Fig. 2). Or-
der parameter starts growing at stresses corresponding to
PT instability in Fig. 1. With increasing stresses order
parameter evolves in a stable equilibrium and continuous
way, describing smooth transition to intermediate struc-
tures Siin along the pathway Si I→Si II. Since at PT
instability stresses, there is no jump in the order param-
eter and corresponding jump in strain and entropy, PT
initially occurs as a third-order PT [22]. When elastic
instability stress reached for the prescribed stress mea-
sure, order parameter grows in a non-equilibrium way to
1 and PT proceeds until completion. This process is ac-
companied by a jump in the order parameter, strain, and
entropy. Therefore, Siin→Si II PT is the first-order after
elastic instability. Thus, a hierarchy of the PT and elas-
tic instability points is found under different prescribed
stress measures.

For reverse PT elastic instability and PT instability
coincide and occur at the same strain E3 = 0.36 cor-
responding to the local stress minimum for any pre-
scribed stress measure. Difference between stresses re-
lated to elastic instability for direct and reverse PTs
constitutes stress hysteresis and energy dissipation dur-
ing PT. During equilibrium third-order PT between the
PT instability point and the elastic instability point,
PT/deformation is fully reversible without hysteresis for
any prescribed stress. Since equilibrium PK2S-strain
curve in Fig. 1 does not have a maximum related to elas-
tic instability point, PT under the prescribed increasing
PK2S is a third-order PT until completion and occurs
without hysteresis and dissipation. Reducing hysteresis
and dissipation are important for various applications,
e.g., for shape memory alloys [25–27] or caloric materials
[27–29]; see also [10].

PT and elastic instabilities under heterogeneous per-
turbations in a finite volume.— During the solution of
boundary-value problems with heterogeneous fields, cho-
sen stress measure can only be prescribed at the bound-
ary, not for each material point within the bulk. This
does not allow one to directly apply elastic instability
criteria obtained for homogenous states. Consequently,
PT conditions under heterogeneous perturbations are not
currently defined. To address this question, let us con-

FIG. 2. Stress-order parameter curves for homogeneous de-
formation in the third direction in which a stress-controlled
compressive loading for three different prescribed stress mea-
sures is applied at σ1 = σ2 = 1 GPa.
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FIG. 3. Nanostructure evolution for a triaxial compressive-
tensile loading with initial random heterogeneous field η in the
range (0; 0.01]. Compressive PK1S is applied at the top face
up to the value P̄ slightly above the peak for the Kirchhoff
stress, but below the peak points for the Cauchy stress and
PK1S in Fig. 1, along with σ1 = σ2 = 1 GPa. Presented
solution is for the entire sample after mirroring with respect
to the symmetry planes of simulation field.

sider a PT in a sample of sizes 20 × 60 × 5 nm3 under
the same loading as for the homogeneous field (Fig. 3).
The left face, bottom face and one of the faces in the
thickness direction are fixed by zero normal-to-the-face
displacement and are symmetry planes. The right face
and the other face in the thickness direction are under
1 GPa tensile Cauchy stress. The PK1S is prescribed
at the top face up to a value P̄ slightly above the first
peak point for the Kirchhoff stress, but below the peak
points for the Cauchy stress and PK1S in Fig. 1. Weak
heterogeneity is introduced by a random distribution of
the initial values of η ⊆ (0, 0.01]. The solution is shown
in Fig. 3.

From the results for a homogeneous field discussed
above, we expect that for the prescribed PK1S, the PT
should not continue unless we reach the PK1S peak
point. Surprisingly, although the PK1S peak point is not
reached yet, the exceeding strain for elastic instability
for the Kirchhoff stress is sufficient for the initiation and
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FIG. 4. Equilibrium stress-strain curves for homogeneous de-
formation under σ3 = −8 GPa and increasing tensile strains
E1 = E2.
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FIG. 5. Nanostructure evolution for random distribution of
initial η ⊆ (0, 0.01], σ3 = −8 GPa and increasing tensile σ1 =
σ2 up to σ̄ =10 GPa, slightly above the peak strain for the
PK2S but lower than the peak strains for other stresses.

completion of the first-order PT. Within the bulk close
to the upper right corner, where the internal stresses due
to heterogeneity are maximum, the critical condition for
initiation of the first-order PT for the prescribed Kirch-
hoff stress is met locally and the region of the complete
product phase is formed and grows, producing complex
stationary nanostructure with significant amount of Si II.
Residual austenite is stabilized by changes in geometry
of the sample.

However, for different loadings, while the general prin-
ciple is the same, different stress measure produces elas-
tic instability prior to other stress measures. For in-
stance, we apply σ3 = −8 GPa and increase tensile
strains E1 = E2. The tensile stresses-strain E2 curves are
shown in Fig. 4. In contrast to the previous compressive
loading, here the PK2S peaks first and PK1S, Kirchhoff,
and Cauchy stresses peak afterward. This means that
PK2S should be the first elastic instability point for ten-
sile loading under heterogeneous perturbations. For the
initial values of η ⊆ (0, 0.01] we apply σ3 = −8 GPa and
increase tensile σ1 = σ2 up to σ̄ =10 GPa, slightly above
the peak strain for the PK2S but lower than the peak
strains for other stresses. As shown in Fig. 5, this is suf-

ficient for initiation of the first-order PT and its comple-
tion in the major part of the sample. Since general ex-
pression for the instability criteria in [8, 9] are expressed
in arbitrary work-conjugate stress and strain measures,
one should just substitute stress measures responsible for
instability obtained above for different loadings to derive
specific elastic instability criteria.

In the above treatment we neglected phonon instabil-
ity, which may occur before elastic instability and limit
maximum stress [30–35]. In particular for Si, phonon in-
stability occurs at hydrostatic pressure at 26 GPa [36]
(well below elastic instability pressure of 75.8 GPa [12])
and at shear strain of 0.22 for simple shear causing
second-order PT [31]. These results do not affect our
solutions in Fig. 1 because for uniaxial compression at
σ1 = σ2 = 0 GPa phonon instability was not found before
elastic instability [37]; we are not aware about any pub-
lished results on phonon instability for loading considered
in Fig. 4. Generally, if stress-strain curves include infor-
mation about phonon instability (and other instabilities,
like electronic, etc.) and following equilibrium processes,
obtained with atomistic simulations (see e.g. [31, 38]),
our approach can be applied in the same way. In partic-
ular, it can be applied to the PFA to PT when an order
parameter describes phonon instability [39].

Conclusions.— A number of basic long-term problems
in lattice instability under finite strains are resolved in
this letter. Using PFA simulations for the Si I↔Si II
PTs, it is shown that the PT instability is independent
of the prescribed stress measures because it occurs at
the same strain for any prescribed stress. Prior to elastic
instability and after PT instability, a continuous third-
order PT is discovered which is followed by a first-order
PT after elastic instability until PT completion. Thus
transformation path changes to Si I→Siin→Si II. Third-
order PTs are quite rarely discussed in literature (see,
e.g. [40] and references); we are not aware of any pre-
vious reports for elastic materials or in connection with
the first-order PTs. Under prescribed compressive sec-
ond Piola-Kirchhoff stress, PT is third-order until com-
pletion; it occurs without hysteresis and dissipation un-
der cyclic loading, properties that are ideal for various
applications.

Since for heterogeneous perturbations stress tensors
can only be prescribed at the external boundary, it is im-
possible to define which stress measure is prescribed at
each material point, i.e., elastic instability is ambiguous.
After third-order PT, the first-order PT occurs when
the first elastic instability criterion (among criteria cor-
responding to different stress measures) is met inside the
volume, surprisingly independent of the stress measure
prescribed at the boundary. For two considered load-
ings, the elastic instability corresponds to the prescribed
Kirchhoff stress and PK2S, respectively, even when the
Cauchy stress was prescribed. None of our results sug-
gests Cauchy-stress-based criterion, in contrast to most
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of previous publications. This also means that finding
the PT criterion from atomistic simulations [3, 10–12]
in terms of the Cauchy stress should be reconsidered.
The general lattice instability criterion should be found
for all possible prescribed stress tensors, which involves
the choice of the local prescribed stresses corresponding
to the first instability being different for different stress
states. One more problem that was not considered here
is taking into account the finite particle and lattice ro-
tations. This problem was solved for PT instability and
homogeneous perturbations in [19, 20], which may help,
along with numerical procedure presented here, to treat
elastic instabilities under heterogeneous perturbations.
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