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Localized states universally appear when a periodic potential is perturbed by defects or terminated
at its surface. In this paper, we theoretically and experimentally demonstrate a mechanism that
generates localized states through continuous translational deformations of periodic potentials. We
provide a rigorous proof of the emergence of the localized states under the deformations. The mech-
anism is experimentally verified in microwave photonic crystals. We also demonstrate topological
phase windings of reflected waves for translated photonic crystals.

In the 1930s, Tamm predicted the localized state of an
electron near the surface of a solid [1]. Years later, Shock-
ley proposed another mechanism that produces surface
states, based on a band inversion of atomic orbitals [2].
Impurities and lattice defects inside a crystal also pro-
duce localized states [3, 4], which play important roles
in doped semiconductors. While such localized states
were first investigated for electrons, they universally ap-
pear in various wave systems. Zero-dimensional localized
states have been observed in electronic superlattices [5],
photonic and magnetophotonic crystals [6–8], plasmonic
crystals [9–13], and phononic crystals [14].

The recent discovery of topological insulators has shed
fresh light on the understanding of surface states in vari-
ous wave systems from a topological perspective. Under
time-reversal symmetry, bulk electronic states in band in-
sulators are generally characterized by the Z2 topological
invariant [15, 16]. The bulk–edge correspondence relates
the bulk Z2 topological invariant to surface characteris-
tics and ensures an existence of gapless boundary states
with the Kramers degeneracy protected by time-reversal
symmetry [17, 18]. Later, it was shown that other dis-
crete symmetries and their combinations generate various
topological numbers for bulk electronic states and asso-
ciated in-gap gapless boundary states [19]. A pioneer-
ing example is the Z topological invariant with a sublat-
tice symmetry in the Su–Schrieffer–Heeger (SSH) model
[20, 21]. The non-zero topological integer in the SSH
model ensures zero-energy end states with sublattice-
symmetry protection. For continuous one-dimensional
crystals with inversion symmetry, Xiao et al. established
a relation between surface observables and bulk proper-
ties and rigorously determined the existence or nonex-
istence of localized states [22]. So far, research on one-
dimensional systems has focused on unit cells with either
sublattice or inversion symmetry to define the topolog-
ical integers, but these discrete symmetries may not be
essential, as suggested by Shockley [2]. In fact, the in-gap
localized states as boundary states could survive under a

gradual structural deformation that breaks the symme-
tries within the unit cell. This consideration indicates an
alternative topological mechanism that generates local-
ized states without using any symmetry protection.
In this letter, we devise a scheme that produces zero-

dimensional localized states in a defect created by a
translational deformation of a periodic potential. A
rigorous proof of emergence of the localized states is
provided without relying on any symmetry protection.
The scheme is experimentally demonstrated in microwave
photonic crystals.
Consider a one-particle eigenmode in one-dimensional

continuous media with a periodic potential of the pe-
riod a. From the Bloch theorem [23], the eigenmode
|ψn(k)〉 = exp(ikx̂) |un(k)〉 is characterized by the crystal
momentum k in the first Brillouin zone [−π/a, π/a] and
the energy band index n, where 〈x|un(k)〉 is periodic in
x. For simplicity, we assume that the eigenenergy En(k)
of |ψn(k)〉 satisfies E1(k) < E2(k) < · · · in the entire
Brillouin zone. From here, we focus on the n-th band.
The first Brillouin zone is discretized as ki = iπ/(Ma)
with i = −M +1,−M+2, · · · ,M (2M points). In terms
of |ui〉 = |un(ki)〉, a Wilson loop is given by

W = 〈uM |uM−1〉 〈uM−1|uM−2〉 · · · 〈u1|u0〉×

〈u0|u−1〉 · · · 〈u−M+2|u−M+1〉 〈u−M+1|e
iGx̂|uM 〉 , (1)

where G = 2π/a and the inner product is defined in
the unit cell [24]. It is normalized to be unity as
limM→∞W = exp(iθZak), where θZak is simply the Zak
phase [25]. The Zak phase specifies a spatial displace-
ment of the localized Wannier orbits that are composed
only of the eigenmodes in the n-th energy band [24]. In
electronic systems, the Zak phase corresponds to surface
charge, which can take a fractional value [26–29].
Now, let us translate continuously the one-dimensional

periodic potential by ξa (0 ≤ ξ ≤ 1) relative to a fixed
frame of the unit cell. The spatial translation changes the
potential configuration from U0 to Uξ inside the fixed
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FIG. 1. (a) One-dimensional continuous medium with a pe-
riodic potential (upper) and the identical system with spatial
translation by ξa (lower). (b) Spatial boundary between the
two identical periodic systems with different translations. The
Born–von–Karman (BvK) boundary condition is imposed,
where the two dashed lines are identified with each other.
(c) Eigenenergies of the entire system with the BvK bound-
ary condition are schematically plotted as a function of the
translational parameter ξ.

cell [see Fig. 1(a)]. When ξ changes from 0 to 1, the
localized Wannier orbit is continuously translated by the
periodic length a. Thus, it works like a classical screw
pump [30]. Being identical to the displacement of the
Wannier orbit with the unit-cell length (apart from a
factor 2π/a), the Zak phase also continuously increases

by 2π under the translation:
∫ 1

0 dξ ∂ξθZak = 2π. The
phase winding counts the Chern integer, which represents
the topological characteristics of a fiber bundle on the
(k, ξ) plane [24, 31]. In this paper, ξ is regarded as a
variable independent of other variables. Nonetheless, one
could consider a continuous change of ξ as a function of
time t. In particular, an adiabatic change of ξ = ξ(t)
from 0 to 1 in t suppresses interband transitions and is
referred to as Thouless pumping [32].

The 2π phase winding in the Zak phase under the
translation leads to a series of non-trivial localized
states in a spatial boundary between two identical one-
dimensional periodic systems with different translations
ξ. To see this, let us consider a periodic arrangement
of unit cells with Uξ in a region of x < 0 and another
periodic arrangement of unit cells with U0 in the other
region of x ≥ 0. The translation parameter ξ and spa-
tial coordinate x subtend an extended two-dimensional
space, as shown in Fig. 1(b). When ξ changes from 0 to
1, the Zak phase in the former bulk region (x < 0) winds
up the 2π phase. Meanwhile, the Zak phase in the latter
bulk region (x ≥ 0) remains unchanged. Accordingly, the
bulk–edge correspondence [24, 31, 32] suggests the exis-
tence of zero-dimensional edge states at the boundary
region (x = 0), whose eigenenergies have ‘chiral’ disper-

sions within a bulk band gap as a function of the trans-
lational parameter ξ [Fig. 1(c)]. Moreover, as the Zak
phase for any bulk band in the region of x < 0 acquires
the same 2π phase winding during the translation, the
number of the ‘chiral’ dispersions between the n-th and
(n+ 1)-th bulk bands are expected to be n [Fig. 1(c)].

To prove this bulk–edge correspondence in the transla-
tional deformation rigorously, let us impose the following
Born–von–Karman (BvK) boundary condition on a fi-
nite system [Fig. 1(b)]. Suppose that at ξ = 0, the entire
one-dimensional system is comprised of NL unit cells in
the region of x < 0 and NR unit cells in the region of
x ≥ 0. For general ξ, we identify x = −NLa + ξa with
x = NRa, such that the lattice periodicity is preserved
at x = NRa ≡ −NLa+ ξa and it is broken only at x = 0.
For ξ = 0 and ξ = 1, the periodicity is completely pre-
served in the entire system, so that the eigenmodes at
ξ = 0 and ξ = 1 are all spatially extended bulk band
states. Under the BvK boundary condition, which dis-
cretizes the Brillouin zone, numbers of the bulk modes in
each band at ξ = 0 and at ξ = 1 are given by NL +NR

and NL + NR − 1, respectively. Namely, the number of
the extended bulk states decreases by one in each band
when ξ continuously changes from 0 to 1. As the energy
has a lower bound and there is no upper bound on the
bulk band index n in continuous media, more than one
eigenmode in each bulk band at ξ = 0 must move into
bulk bands with a higher energy at ξ = 1 during the
translation of ξ. For example, when one eigenmode in
the lowest bulk band at ξ = 0 goes to the second low-
est bulk band at ξ = 1, two eigenmodes in the second
lowest band at ξ = 0 must go to the third lowest one
at ξ = 1 [Fig. 1(c)]. This argument inductively dictates
that during the translation of ξ, n modes always raise
their energies out of the n-th bulk energy band and go
across the band gap between the n-th and (n + 1)-th
bands. An in-gap mode generally has a complex-valued
wavenumber [33]. Accordingly, the n in-gap modes must
be spatially localized at x = 0, where the lattice period-
icity is broken; therefore, they are simply defect modes
localized at the boundary. Importantly, the argument
so far does not require any symmetry protection for the
presence of the in-gap localized states.

Now, we experimentally confirm the theoretical con-
cept by using microstrip photonic crystals. A microstrip
is a transmission line composed of a metallic strip sep-
arated from a conducting ground plane by a dielectric
substrate. Microwaves propagate between the topside
metallic strip and the backside ground plane, and the
impedance and refractive index of a microstrip are deter-
mined by the geometrical parameters.

The first photonic system studied has a binary unit
cell, in which the two strips with different widths be-
have as two different media. As shown schematically in
Fig. 2(a), we continuously introduce a defect around the
boundary by displacing the left half by ξa while leaving
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FIG. 2. (a) Schematic top view of binary microstrips at ξ = 0
(upper) and at ξ 6= 0 (lower). (b) Photograph of a sample
with ξ = 0.35. The structural parameters are a = 12mm,
lA/a = 0.8, lB/a = 0.2, wA = 1.8mm, wB = 0.45mm, and
NL = NR = 5. The microstrip is made of a 35µm-thick cop-
per film on a polyphenylene-ether substrate (Risho CS-3396;
thickness 0.56mm, ǫ = 11.3, tan δ = 0.003 at 1GHz), and
SMA connectors (GigaLane PSF-S01-001) are attached to
the substrate. The back of the substrate contains a ground
plane made of a copper film with the same thickness as the mi-
crostrip. (c) Power transmission spectra through the 21 sam-
ples from ξ = 0 to ξ = 1 with the step size of ∆ξ = 0.05. The
input power is set to 0 dBm. (d) Power transmission spectra
inside the first band gap for several values of ξ. (e) Calculated
distribution of the absolute value of the complex electric-field
amplitude at 4.22GHz with ξ = 0.538 inside the first band
gap. The amplitude is normalized to that of the incident field.
Regions of different colors represent different width strips.

the right half unchanged. A photograph of one of the fab-
ricated samples (ξ = 0.35) is provided in Fig. 2(b). Using
a vector network analyzer (Keysight 5232A), we mea-
sured the power transmission through the samples with ξ
from 0 to 1 with a step size of ∆ξ = 0.05. The transmis-
sion spectra obtained for these different ξ are summarized
in Fig. 2(c). Under 20GHz, we clearly see five transmis-
sion bands, and four band gaps between them. The n-th
band gap has n boundary modes running between the
two neighboring transmission bands, as expected from

(a)

(b)

(c)

ξa

a

NL units NR units

boundary

12 mm

copper

(d)

ξ
=

0

lA

wA

lB

wCwB

lC

0 0.5 1
ξ

0

4

8

12

16

20

F
re

q
u
e
n
c
y
 (

G
H

z
)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

P
o
w

e
r 

tr
a
n
s
m

is
s
io

n
 (

d
B

)

-50

-40

-30

-20

-10

0

2 3 4 5 6

P
o
w

e
r 

tr
a
n
s
m

is
s
io

n
 (

d
B

)

Frequency (GHz)

ξ=0.10
ξ=0.25
ξ=0.50
ξ=0.65
ξ=0.80

FIG. 3. (a) Schematic top view of ternary microstrips at
ξ = 0 (upper) and at ξ 6= 0 (lower). (b) Photograph of a
sample with ξ = 0.35. The structural parameters are lA/a =
0.5, lB/a = 0.3, lC/a = 0.2, wA = 2.5mm, wB = 1.5mm,
and wC = 0.45mm. The other parameters are the same as
those in Fig. 2. (c) Power transmission spectra through the
21 samples from ξ = 0 to ξ = 1 with a step size of ∆ξ = 0.05.
(d) Power transmission spectra inside the first band gap for
several values of ξ.

the theory. The qualitative behavior of the transmission
spectra can be well captured by a transfer-matrix model
calculation [34]. Figure 2(d) shows some of the experi-
mentally obtained power transmission spectra inside the
first band gap. The transmission peak decreases and the
line width becomes narrower around ξ = 0.50. This is be-
cause coupling between the incident wave and the bound-
ary mode is reduced at the center of the band gap. In
fact, the transfer-matrix model calculation confirms that
the localized mode becomes the narrowest at the center
of the first band gap [34], as plotted in Fig. 2(e).

The second photonic system studied has three com-
ponents in the unit cell. The design and photograph
of the ternary microstrips are shown in Figs. 3(a) and
(b), respectively. With three different material regions,
the unit cell has no spatial inversion symmetry at any ξ.
Figures 3(c) and (d) illustrate the experimental transmis-
sion spectra for 21 samples with different ξ [34]. These
transmission spectra confirm that the n localized modes
run across the n-th transmission gap during the transla-
tion of ξ from 0 to 1. The experimental results clearly
demonstrate that inversion symmetry is not essential for
the generation of the series of localized states through
translational deformation.
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FIG. 4. Definitions of (a) left and (b) right complex reflection

amplitudes r(L)(ξ, ω) and r(R)(ω), respectively. Photograph
of (c) binary and (d) ternary samples (ξ = 0 and 0.60) to

measure r(L)(ξ, ω). The parameters are the same as those

in Figs. 2 and 3. Topological winding of arg[r(L)(ξ, ω0)] −

arg[r(L)(0, ω0)] as a function of ξ for (e) binary and (f) ternary
samples. Here, ω0 is set to 2π × 4.20GHz and 2π × 8.50GHz
inside the first band gap (circles) and second band gap (trian-
gles), respectively. A microwave is injected from the right con-
nector; meanwhile, the left connector is connected to another
port of the network analyzer through a cable. The theoretical
curves for the semi-infinite systems are plotted with the ex-
perimentally obtained points. (g) One-dimensional photonic
crystal terminated by a perfect reflector.

Next, we establish the physical origin of the localized
states in terms of phase winding of the complex reflec-
tion amplitude. To this end, we divide the deformed
crystal into two halves. Namely, the left region with
Uξ is now terminated at its right end by a vacuum re-
gion, while the right region with U0 is terminated by
the same vacuum region at its left end [Figs. 4(a) and
(b)]. Photonic properties of each semi-infinite region are
characterized by the complex reflection amplitude r or a

relative surface impedance Zs ≡ (1 + r)/(1 − r) at the
respective termination. The topological characteristics
of localized states are encoded between the complex re-
flection amplitudes at both terminations r(L)(ξ, ω) and
r(R)(ω) with an angular frequency ω. Specifically, a con-
dition for eigenmodes localized at the original defect is
nothing but the resonance condition across the two ter-

minations: Z
(L)
s (ξ, ω)+Z

(R)
s (ω) = 0. The resonance con-

dition can also be written as r(L)(ξ, ω) · r(R)(ω) = 1.
When ω remains inside the band gap between the n-th
and (n+1)-th bulk bands, both the semi-infinite regions
behave as perfect reflectors: |r(R)(ω)| = |r(L)(ξ, ω)| = 1.
Thus, the condition shows that the phase of r(L)(ξ, ω)
must wind up by 2πn during the translation from ξ = 0
to ξ = 1, because the n boundary modes move across
the angular frequency ω in the gap. The direction of the
winding is determined by Foster’s theorem [34, 35].
The 2πn phase winding of the reflection is considered

as the physical origin of the localized states. To confirm
this phase winding experimentally, we fabricated samples
composed only of the left-half parts with different ξ, as in
Figs. 4(c) and (d). Figures 4(e) and (f) show measured
phases of the reflected waves of samples with different ξ
(relative to the measured phase at ξ = 0). The experi-
mental data points agree well with the theoretical curves
obtained from the transfer-matrix model calculations for
the semi-infinite systems [34]. The results clearly demon-
strate the presence of phase winding of the reflection am-
plitude, regardless of the unit-cell symmetry.
The phase winding of the reflection provides a unified

perspective on both Tamm and Shockley states, which
are often separately attributed to a perturbed surface
potential and band inversion, respectively [1, 2, 8]. To
this end, we consider that the left region with Uξ is ter-
minated by a perfect reflector at the right end as shown
in Fig. 4(g). Given |r(R)(ω)| = 1 for those ω in the n-th
transmission gap of the left part, the 2πn phase wind-
ing of r(L)(ξ, ω) during the translation of ξ from 0 to
1 always guarantees the emergence of n localized eigen-
modes at the termination, irrespective of the details of
the reflector on the right side. This holds true for any
reflector with ξ-independent perturbations, provided the
perturbations maintain the perfect-reflection condition.
Such perturbations include a delta-function-like surface
perturbation, the existence of which distinguishes Tamm
states from Shockley states, as discussed in Ref. 2. In
this sense, our proposed mechanism provides a compre-
hensive viewpoint for both Tamm and Shockley states.
In summary, we demonstrated a scenario that produces

localized states through translational deformations anal-
ogous to classical screw pumping. The mechanism is not
restricted to a specific physical system; rather, it is uni-
versal for any waves. Localized states in a system, even in
the absence of sublattice or inversion symmetry, are now
interpreted as topological boundary modes. The termi-
nation at the spatial boundary is understood as an engi-
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neered degree of freedom and can be used for tuning the
spatial localization of the boundary mode.
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