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Hyperbolic metamaterials (HMMs), an unusual class of electromagnetic metamaterials, have found
important applications in various fields due to their distinctive properties. A surprising feature of
HMMs is that even continuous HMMs can possess topological edge modes. However, previous
studies based on equal-frequency surface (analogy of Fermi surface) may not correctly capture the
topology of entire bands. Here we develop a topological band description for continuous HMMs
that can be described by a non-Hermitian Hamiltonian formulated from Maxwell’s equations. We
find two types of three dimensional non-Hermitian triply-degenerate points with complex linear
dispersions and topological charges ±2 and 0 induced by chiral and gyromagnetic effects. Because
of the photonic nature, the vacuum band plays an important role for topological edge states and
bulk-edge correspondence in HMMs. The topological band results are numerically confirmed by
direct simulation of Maxwell’s equations. Our work presents a general non-Hermitian topological
band treatment of continuous HMMs, paving the way for exploring interesting topological phases
in photonic continua and device implementations of topological HMMs.

Introduction. Hyperbolic metamaterials (HMMs), also
known as indefinite media, are a class of optical meta-
materials with extreme anisotropy [1]: the effective per-
mittivity (or permeability) tensor components that are
parallel and perpendicular to the optical axis have op-
posite signs, therefore their optical properties resemble
dielectric and metal in orthogonal directions [1, 2]. Due
to such unique property and associated indefinite dis-
persion, HMMs possess infinite optical density of states,
giving rise to applications in versatile fields [3–10] such
as super-resolution microscopy, biosensing, lasing, etc.

Recently, it was proposed [11–13] that HMMs can serve
as an ideal candidate for studying topological photon-
ics in materials with continuous translational symmetry
(i.e., no periodic lattice structure at optical wavelength
scale or the periodicity goes to infinity) [14]. Topologi-
cal photonics, the application of topological band theory
in photonic systems, have generated great excitements
for both fundamental studies and practical applications.
Most studies have focused on periodic dielectric systems
[15] (e.g., photonic crystals, coupled waveguides and cav-
ities), which are well described by band topology in Bloch
basis based on the analogy between electromagnetic wave
equations and the Schrödinger’s equation [16–28].

Different from Hermitian dielectric systems [18, 19, 29]
with real-valued band structures, HMMs represent a con-
tinuous non-Hermitian system with complex eigenvalues
due to their metal nature along one or two of the op-
tical axes. Therefore two important questions naturally
arise. Can a theory be developed for characterizing topo-
logical bands of such continuous non-Hermitian HMMs?
If so, what new physics can arise from such topological
band theory? We note that previous studies have intro-
duced the equal frequency surface (EFS) to characterize
the topology of HMMs [11–13], with photonic EFS cor-

responding to the Fermi surface in electronic materials.
While the Fermi surface does contain certain informa-
tion, the complete topological properties are encoded in
the entire bands. As a result, the EFS theory is incom-
plete for investigating the topological properties of con-
tinuous non-Hermitian HMMs, and may lead to ambigu-
ous (sometimes misleading or incorrect) predictions (see
Supplementary Materials (SM) [30] for an example).

In this Letter, we answer these two important ques-
tions by developing a topological band description,
along with the bulk-edge correspondence, for continuous
HMMs. Our main results are:

i) An effective non-Hermitian Hamiltonian for HMMs
is derived from Maxwell’s equations. Symmetry analy-
sis shows the physics can be described by three bands
(i.e., a spin-1 system). Proper gyromagnetic or chiral
field opens a band gap between the upper and the other
two bands except at k = 0, which is a non-Hermitian
triply-degenerate point (TDP) [31–33] with complex lin-
ear band dispersions (i.e., a topological semimetal). The
complex bulk spectrum exhibits an exceptional cone with
the TDP as cone vertex. TDPs were studied recently in
solid state [31, 32] and ultracold atomic systems [33], but
have not been explored in photonic materials or any non-
Hermitian systems, and their real linear dispersions are
very different from non-Hermitian TDPs. The topologi-
cal charge of the TDP at k = 0 is ±2 (0) for chiral (gyro-
magnetic) effect. For any fixed nonzero kz, the HMM is
a 2D Chern insulator, and the TDP emerges as the band
gap closing point at kz = 0.

ii) There exist surface states connecting the single
TDP to infinity for both cases (change ±2 or charge 0),
which are illustrated through topological edge states in
both 3D and 2D Chern insulators with fixed kz using
the bulk-edge correspondence. More importantly, the
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topological edge states can only be found in the common
band gap of the HMMs and vacuum because unlike elec-
trons in solid-state materials, photons can propagate in
the vacuum, forming vacuum band structures outside the
HMMs. The edge states are purely real and do not suf-
fer loss as the complex bulk, which, combining with the
unique properties of HMMs, enable the design of novel
optical devices such as topological lasing.

iii) Our theoretical predictions on topological bands
and chiral edge states of HMMs are confirmed by numer-
ically solving the Maxwell’s equations using COMSOL
simulations.

Non-Hermitian Hamiltonian and topological invariant .
The HMMs can be described by the source-free Maxwell’s
equations with the following constitutive relation

D = εE + iγH, B = µH − iγE, (1)

based on the symmetrized Condon set [34], where ε, µ
and γ are 3×3 permittivity, permeability and chirality
tensors. Without gain and loss, they satisfy µ† = µ
and ε† = ε. The chirality term can be written as
γ = Tr(γ)I/3 + N with I the identity matrix and N
a real-valued symmetric trace-free tensor. The chiral
and gyromagnetic effects for HMMs can be induced by
nonzero γ and imaginary non-diagonal terms in ε or µ,
respectively. The Maxwell’s equations can be recast to a
linear-transformation form H|Ψ〉 = ω|Ψ〉, with

H =

(
ε iγ
−iγ µ

)−1(
0 p
−p 0

)
, |Ψ〉 =

(
E
H

)
, (2)

where p[mn] = εmnl∇l is an antisymmetric tensor oper-
ator (pT = −p) defined through the Levi-Civita symbol
εmnl. In the limit γ → 0, Eq. (2) reduces to the Hermi-
tian formalism in previous works [18, 19, 29] if ε and µ are
positive-definite. In the context of HMMs, the Hamilto-
nian in Eq. (2) is generally non-Hermitian and possesses
complex eigenvalues, therefore the topological classifica-
tions for Hermitian systems [35–37] do not apply.

The Hamiltonian has 6 bands, which appear in pairs
(ω,−ω) due to the symmetry ΠHΠ−1 = −H, where
the symmetry operator Π is defined as the composite
of chiral symmetry C and the operation γ → −γ. Here
C = σz⊗I3 and σi represents Pauli matrix in the (E,H)
space. In addition, the state at (k, ω) represents the same
physical state as that at (−k,−ω) due to the symmetry
H(−p) = −H(p), which holds for arbitrary H. When
combined together, these symmetries dictate that only
three bands are independent. Here we consider three
bands with <(ω) ≥ 0 (< takes the real part), which form
an effective spin-1 system. Note that one band is a zero-
energy (ω = 0) flat band, which represents the static
solutions E = ∇d(r) and H = ∇b(r). Interestingly, the
three bands are always (triply) degenerate at (k, ω) = 0
for arbitrary H, independent of ε, µ, and γ.

The energy spectra for a non-Hermitian Hamilto-
nian are generally complex, and the topological in-
variants can be defined by either eigenvalues or eigen-
states. The eigenvalue-based winding number for a
closed loop in momentum space is defined as [38, 39]
Cω =

∮
dk ∂

∂k
arg[ω(k)], which is generally trivial and

irrelevant to the topological edge modes for HMMs dis-
cussed here. On the other hand, the bands for HMMs are
separable in the complex plane, therefore winding num-
ber W = 1

π

∮
S1 dk · A (k) and the Chern number C =

1
2π

∮
S dS · F based on eigenstates are well-defined and

quantized, which can be used to characterize the topo-
logical properties of HMMs. Here S1 is a closed 1D loop
and S can be a closed 2D sphere S2 (or infinite plane R2)
in the momentum space, A (k) = −iL〈Ψ(k)|∇k|Ψ(k)〉R
and F = ∇×A (k) are the Berry connection and Berry
curvature respectively, and |Ψ(k)〉R (|Ψ(k)〉L) is the right
(left) eigenstate [39] of the Hamiltonian. Among the
three bands, the zero-energy flat band is topologically
trivial, while the other two nonzero bands possess op-
posite topological invariants. Hereafter we only plot the
two nonzero-energy bands with <(ω) > 0 for better vi-
sualization.

Charge ±2 TDPs from chiral effects. Without chi-
ral and gyromagnetic terms and assume ε =diag(εx >
0, εy > 0, εz < 0) and µ = I for hyperbolic dispersion,
there is one degenerate line along the kz axis between
the two upper non-zero bands with εx = εy, as shown
in Figs. 1(a). The degenerate line possesses a non-trivial
winding number (defined by the highest band) W = 2 for
a closed loop encircling the line [30]. The corresponding

FIG. 1: Typical band structures for HMMs. (a) A HMM
with (εx, εy, εz) = (4, 4,−3) exhibits a degenerate line along
kz axis between two nonzero bands. (b) The degenerate line
(except k = 0) in (a) is lifted by γ = diag(1, 0, 0). (c) Cor-
responding gapped topological bands in 2D kx-ky plane for
kz = 1. See SM [30] for the imaginary bands. The dashed
green circle is the exceptional ring. (d) The 3D exceptional
cone in momentum space at kz ≥ 0.
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band structure in the kx-ky plane with a fixed non-zero kz
contains a quadratic band touching point with winding
number W = 2 at (kx, ky) = (0, 0), which is computed on
a closed circle enclosing the degenerate point. The band
structures for εx 6= εy are presented in SM [30].

The degeneracy between two non-zero bands along the
kz axis (except at k = 0) can be lifted by breaking in-
version symmetry using a chiral term (Fig. 1(b) with
γ =diag(1, 0, 0)). For a fixed kz 6= 0, the gap at the
quadratic band touching point is opened, yielding 2D
Chern insulators with opposite Chern numbers −1 and
+1 for kz < 0 and kz > 0 because the inversion symmetry
along the z axis is broken (Fig. 1(c)). Note here the 2D
Chern number is always defined by the upper band that
is fully gapped except at k = 0. The 2D Chern number
is integrated over the 2D infinite plane R2 in momentum
space at constant kz and is quantized in continuous limit
(see SM [30] for a proof). The lower non-zero band tran-
sits from real to imaginary eigenenergies along an excep-
tional ring with coalesced eigenstates (the green circle in
Fig. 1(c)). Such an exceptional ring at finite kz shrinks
to a point at k = 0, resulting in a 3D exceptional cone
with the cone vertex at k = 0 (Fig. 1(d)).

The origin k = 0 is a TDP with linear band disper-
sions (Fig. 1(b) and [30]), which, for the lower band, can
appear in either real or imaginary spectrum along differ-
ent momentum directions. Such a non-Hermitian TDP
is quite different from the real TDPs in electronic and
cold atomic Hermitian systems [31–33]. At kz = 0, the
band gaps for 2D Chern insulators close, yielding a topo-
logical charge C = +2 of the TDP that is equivalent to
the change of 2D Chern number across kz = 0. Here the
topological charge is evaluated on a closed surface S2 en-
closing k = 0. Because there is only one charge +2 TDP
in the HMM due to its continuous translational symme-
try, there should be surface states connecting the TDP to
infinity. We consider an open boundary condition along
the y direction with a semi-infinite HMM in y < 0 and
the vacuum (i.e., µv = εv = I) at y > 0, and the sur-
face state is solved as Dyakonov wave [40]. Within the
scope of this work, we find that the surface wave only
has real energy despite the complex bulk spectrum. The
obtained surface states in the kx-kz plane connect two
bulk bands and vanish at the TDP. Because the band
gap appears at different ω regions for different kz, the
commonly used surface spectral density at a fixed ω is
not good for describing the surface states of continuous
HMMs. For a fixed kz 6= 0, the chiral edge states prop-
agate along opposite directions (i.e., opposite velocities
dω/dkx) for kz > 0 and kz < 0 (Fig. 2(a)) because of
their opposite bulk Chern numbers of 2D insulators. Al-
though the lower band is purely imaginary in part of the
momentum space, the edge states only connect to purely
real parts.

Charge 0 TDP from gyromagnetic effects. The degen-
erate line in Fig. 1(a) can also be gapped out by the gyro-
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FIG. 2: 2D band structure with edge states. We choose
(εx, εy, εz) = (4, 4,−3). The color-coded areas represent sub-
bands under projection and solid red (or dark gray) curves are
chiral surface waves with velocity dω/dk. (a) The edge states
are induced by a pure chiral effect γ = diag(1, 0, 0) such that
they possess opposite chirality for kz = +1 (red) and kz = −1
(dark gray) while the band structure remains the same. The
two dashed curves show the bands with γ = 0. (b) The chiral
edge states are the same at kz = ±1 for a gyromagnetic term
εxy = −εyx = i. (c) Same as (b) but we set kx = −0.3 and
compute the edge states along kz. Here a zero charge TDP
yields two edge states with opposite chirality.

magnetic effect, leading to another type of TDP at k = 0.
We consider the gyromagnetic effect that is induced by a
magnetic field along the z direction, which yields a pure
imaginary non-diagonal term εxy (εyx = −εxy to keep ε
Hermitian). The resulting band structure is similar as
Fig. (1b) (see Fig. (3b)). However, the Chern num-
bers for 2D bands in the kx-ky plane are +1 for both
kz > 0 and kz < 0 because the magnetic field along the
z direction, although breaks the time-reversal symmetry,
still preserves the inversion symmetry along the z axis.
The Chern number changes sign with the sign of εxy, i.e.,
sign(=(εxy)) (= takes the imaginary part). Although the
band topology does not change across kz = 0, the band
gap still closes, leading a topological TDP at k = 0 with
charge 0 due to opposite Berry flux for kz > (<) 0 [30].

Because of the same topology, the edge states for
kz > 0 and kz < 0 propagate along the same direction
(Figs. 2(b),3(b)). We see for a given kx and ω at the
edge, there could be two surface states with opposite kz.
In Fig. 2(c), we show these two edge modes along kz for a
fixed kx, which start from the lower band and gradually
approach the upper band. As a comparison, there may
be only one edge mode along kz for a fixed large kx with
the chiral effect [30]. Such double edge modes originate
from topologically trivial 2D bands in the ky-kz plane
for a fixed kx, which gives zero or even numbers of edge
modes with opposite chirality.

We remark that when both gyromagnetic and chiral
effects are considered, their competition would drive a
transition between charge-2 and charge-0 TDPs. An ex-
ample is shown explicitly in SM [30].

Bulk-edge correspondence with vacuum bands. Unlike
electronic materials, vacuum is not an insulator for pho-
tons and there exist photonic bands for vacuum (al-
though topologically trivial), i.e., the free space contin-
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FIG. 3: (a) 2D band structure and edge states with a gy-
romagnetic term εxy = 3.5i for kz = 1. The dashed green
curve is the vacuum band, which is two-fold degenerate. Two
dashed curves (from top to bottom) give the frequencies of
the line source in COMSOL simulations shown in Fig. 4(c,a).
(b,c) 3D band structures with edge states for εxy = 2i and
εxy = 3.5i, respectively. The red surfaces represent chiral
surface waves and the green one is the vacuum band.

uum. Because of its direct contact with the edges of
HMMs, vacuum effects should be taken into account for
edge states and bulk-edge correspondence. Here we il-
lustrate the vacuum effects using gyromagnetic effects.
For a small εxy term, the vacuum band is higher than
both bulk bands of the HMM (the vacuum band was not
shown in Fig. 2(b,c) for this reason). With increasing
|εxy|, the band gap between the two nonzero bulk bands
increases and the upper band would surpass the vacuum
bands at a certain value of |εxy|, after which the edge
mode connects to the vacuum band, instead of the upper
band, as shown in Fig. 3(a). This is because photons
cannot localize at the boundary of the HMM after they
diffuse into vacuum. Since the vacuum band is topologi-
cally trivial, the physical properties of the surface waves
like chirality are preserved.

In Fig. 3(b,c), we plot the 3D band structures with
edge modes for both weak (εxy = 2i) and strong (εxy =
3.5i) gyromagnetic effects in the kz-kx plane, which show
similar features as Figs. 2(b) and 3(a). Note that the
vacuum band crosses (k, ω) = 0 and does not intersect
with the non-zero upper HMM band away from the TDP
because both bands increase linearly with respect to |k|.
The surface states, starting from the TDP, always fill the
common gap between the lower HMM band and either
the upper HMM or vacuum bands, depending on which
has the lower energy. For a given εxy, only one band (up-
per HMM band (Fig. 3(b)) or vacuum band (Fig. 3(c))
for weak and strong gyromagnetic effects, respectively)
is connected by the surface states.

Numerical simulations. The above topological band
properties and corresponding edge states in continuous
HMMs can be further confirmed through COMSOL Mu-
tiphysics. Here we choose three different values of line
source frequency ωI = 0.9, 1 and 1.45, which correspond
to band energies below the vacuum band, overlapping
with the vacuum band, and overlapping with both the
vacuum and bulk bands, respectively (Fig. 3(a)). The
simulation results are shown in Fig. 4. In panel (a),

FIG. 4: COMSOL simulation results for our model, where a
HMM is placed in vacuum with two absorption materials on
two sides (gray-coded areas). The color represents the distri-
bution of total electric field strength. The green arrow indi-
cates the position of a line source, which is a plane wave along
vertical direction, with input energy ωI . The field propagates
along the z-direction. We choose the same parameters as
those in Fig. 3(a) and tune the input source to (a) ωI = 0.95,
(b) ωI = 1 and (c) ωI = 1.45. (d) Same as panel (a) except
that the sign of the applied gyromagnetic term is opposite
such that the chirality of the edge state is reversed.

when ωI just lies below the vacuum band, the surface
wave moves along the positive direction and is robust
to any scattering process. When we increase ωI a little
bit so that it overlaps with the vacuum band, the sur-
face wave is scattered into vacuum at defective points
and source (panel (b)). If ωI overlaps with both vacuum
and bulk bands, as well as the gapless surface state, the
electromagnetic waves diffuses into the entire space while
the right side has a stronger field intensity (panel (c)).
Finally, since the chirality of edge states is determined
by sign(=(εxy)), the surface wave indeed travels along
the opposite direction when the gyromagnetic term is
changed to an opposite sign in Fig. 4(d).

Here, we mainly concern the simulations with gyro-
magnetic terms while the chirality cases are studied in
Supplementary Materials [30].

Discussions and conclusion. We have considered a
HMM with hyperbolicity on the permittivity tensor,
which, however, is not necessary for the existence of
chiral surface wave. For instance, a HMM with ε = I
and (µx > 0, µy > 0, µz < 0) may also exhibit chi-
ral surface waves under proper time-reversal (or inver-
sion) symmetry breaking. Besides εxy, the gyromagnetic
effects can also be generated by non-diagonal terms in
µ. Indeed, a purely imaginary µxy induces chiral surface
waves in a similar way, which, however, becomes topo-
logically trivial (gapless) upon passing the critical point
=(µxy) = ±√µxµy [30].

For experimental considerations, the chiral effects exist
in a range of natural materials [41] while the advances of
metamaterials allow us to synthesize strong chiral media
[42]. To achieve gyromagnetic effects, magnetic materials
can be mixed during fabrication and one commonly used
material is Yttrium-Iron-Garnet [20].

The topological band theory described here can be ap-
plied to various parameter regions and many interest-
ing effects, such as gain and loss [43], disorder, bian-
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isotropy terms with more general γ tensor, remain to be
explored. The hyperbolic band dispersion of the topo-
logical HMMs opens a new avenue for studying negative
refraction with topological edge states as well as topo-
logical lasing. In particular, the topological edge states
in HMMs may be used to design a topological-semimetal
laser. By tuning the structure of HMM and gyromag-
netic/chiral field, the topological edge mode can be pro-
moted to the lasing mode, rendering a highly efficient
single-mode laser, which is robust to local disorders and
defects. Note that although the bulk spectrum of HMMs
could be complex, the topological edge spectrum is purely
real. Thus it does not suffer from the inherent loss, which
is the primary roadblock to the insertion of bulk HMMs
into practical technologies. Because of the important and
unique properties of HMMs like broad-band spontaneous
emission enhancement (thus, the lasing threshold would
be very small) and the ability to support propagations
of large-momentum waves [2], the topological-semimetal
laser may outperform recently emerged topological insu-
lator laser using photonic crystals [44, 45].

In conclusion, we developed a topological band descrip-
tion for the non-Hermitian continuous HMMs and found
two types of non-Hermitian photonic triply-degenerate
points (classified by their topological charges) with dif-
ferent surface states. Our work should provide physi-
cal understanding of topological phases in HMMs and
may inspire further theoretical and experimental investi-
gations on the fundamental properties as well as practical
applications of topological photonic continua.
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