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Dominant multi-particle interactions can give rise to exotic physical phases with anyonic excita-
tions and phase transitions without local order parameters. In spin systems with a global SU(N)
symmetry, cyclic ring-exchange couplings constitute the first higher-order interaction in this class.
In this letter we propose a protocol how SU(N) invariant multi-body interactions can be imple-
mented in optical tweezer arrays. We utilize the flexibility to re-arrange the tweezer configuration
on time scales short compared to the typical lifetimes, in combination with strong non-local Rydberg
interactions. As a specific example we demonstrate how a chiral cyclic ring-exchange Hamiltonian
can be implemented in a two-leg ladder geometry. We study its phase diagram using DMRG sim-
ulations and identify phases with dominant vector chirality, a ferromagnet, and an emergent spin-1
Haldane phase. We also discuss how the proposed protocol can be utilized to implement the strongly
frustrated J −Q model, a candidate for hosting a deconfined quantum critical point.

Introduction.– Ultracold atoms in optical lattices have
become a versatile platform for performing analogue
quantum simulations, with widely tunable interactions
[1] and the ability to control the single-particle band
structure [2–8]. Using atoms with permanent electric or
magnetic dipole moments [9] or in Rydberg states [10]
allows to study systems with long-range dipole-dipole or
van-der Waals interactions, which can mimic the long-
range Coulomb repulsion between electrons in a solid.
These ingredients can be combined to study exotic phe-
nomena in strongly correlated many-body systems, re-
lated for example to quantum magnetism [11–17] or the
fractional quantum Hall effect [18–20]. Leveraging the
capabilities of ultracold atoms, such experiments promise
new insights for example to directly measure topologi-
cal invariants [21–25] or image the quantum mechanical
wavefunction with single-site resolution [26–31].

In this letter, we go beyond the two-body interactions
realized so far and propose a general protocol to imple-
ment highly symmetric multiparticle interactions with
ultracold atoms in optical tweezer arrays. Multiparti-
cle interactions can lead to exotic ground states with in-
trinsic topological order [32, 33], with applications for
quantum computation [34, 35], and they are an impor-
tant ingredient for realizing lattice gauge theories [36–39]
central to the quantum simulation of high-energy phe-
nomena or deconfined quantum criticality [40, 41]. If
these higher-order couplings possess additional symme-
tries, e.g. SU(N) invariance in spin systems, models with
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strong frustration can be realized whose ground states are
strongly correlated quantum liquids.

In condensed matter systems multi-spin interactions
of this type emerge from higher-order virtual processes
[42], leading to corrections to the pairwise Heisenberg
couplings of SU(2) spins in a half-filled Hubbard model.
These cyclic ring-exchange terms play a role in frustrated
quantum magnets like solid 3He [43] and possibly also
for the phase diagram of high-Tc cuprate superconductors

FIG. 1. Proposed setup: SU(2)-invariant chiral cyclic ring-
exchange interactions can be realized by combining state-
dependent lattices generated by optical tweezer arrays and
strong Rydberg interactions with a central Rydberg-dressed
control qubit (C). The auxiliary states |τ = 1〉|σ〉 with σ =↑, ↓
(orange) of the atoms on the sites of the plaquette are subject
to a state-dependent tweezer potential which allows to per-
mute them coherently around the center. Our protocol makes
use of stroboscopic π pulses between the physical states τ = 0
(green) and the auxiliary states τ = 1, which only take place
collectively on all sites and conditioned on the absence of a
Rydberg excitation in the control atom.
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[44, 45]. In this letter we demonstrate how such multi-
spin interactions can be realized and independently tuned
in ultracold atom systems without resorting to high-order
virtual processes.

A promising route to implementing multiparticle pro-
cesses is to use strong interactions between atoms in dif-
ferent Rydberg states representing spin degrees of free-
dom. This allows to build a versatile quantum simulator
which can be used to realize ring-exchange interactions
in spin systems by representing them as sums of products
of Pauli matrices [46], or to implement local constraints
giving rise to emergent dynamical gauge fields [47, 48].

Here we follow a similar strategy but propose to com-
bine strong Rydberg interactions with the capabilities to
quickly change the spatial configuration of atoms trapped
in optical tweezer arrays [49–53]. We consider general
lattice models with one N -component particle per lattice
site (fermionic or bosonic) and show, as an explicit exam-
ple, how a general class of SU(N)-invariant chiral cyclic
ring-exchange (CCR) interactions can be realized. They
are described by a Hamiltonian (~ = 1)

ĤCCR(φ) = K
∑
p

(eiφP̂p + e−iφP̂ †p ). (1)

where the sum is over all plaquettes p of the underly-
ing lattice, the operator P̂ †p (P̂p) cyclically permutes the
spin configuration on plaquette p in clockwise (counter-
clockwise) direction and φ is a tunable complex phase.
A generalization to finite hole doping, with zero or one
particle per lattice site, is straightforward.

Non-chiral cyclic ring-exchange interactions, realized
by Eq. (1) for φ = 0, are believed to play a role in the
high-Tc cuprate compounds. These materials can be de-
scribed by the 2D Fermi-Hubbard model on a square
lattice, with weak couplings between multiple layers in
z-direction [54]. For the relevant on-site interactions
U , which dominate over the nearest-neighbor tunneling
t � U , this model can be simplified by an expansion in
powers of t/U . To lowest order, one obtains a t−J model
[55] with nearest-neighbor spin-exchange interactions of
strength J = 4t2/U . Next to leading order, cyclic ring-
exchange terms on the plaquettes of the square lattice
contribute with strength K = 20t4/U3. By comparison
of first principle calculations and measurements in the
high-temperature regime it was shown that K ≈ 0.13×J
in La2CuO4 [56] but its effect on the phase diagram re-
mains debated. In ultracold atoms, similar higher-order
processes have been used to realize non-chiral cyclic ring-
exchange couplings [57, 58].

We start by explaining the general scheme using the
example of CCR interactions. Our method is more ver-
satile however, and we discuss how it can be adapted to
implement the J −Q model which has been proposed as
a candidate system realizing deconfined quantum criti-
cality [40, 41]. We also analyze the phase diagram of the
CCR Hamiltonian (1) in a ladder geometry, with exactly
one SU(2) spin per lattice site. We show that the phase
diagram contains a gapped Haldane phase with topologi-

cally protected edge states [59–61] at intermediate values
of π/4 . φ . 3π/4, a ferromagnetic phase for φ & 3π/4
and a dominant vector chirality for φ . π/4.

Implementation.– For simplicity we consider a single
plaquette, restrict ourselves to Np = 4 sites and as-
sume SU(2) symmetry, see Fig. 1. Generalizations of our
scheme to more than one plaquette, Np 6= 4 and SU(N)
symmetry are possible, see supplements (SM) , which in-
cludes Refs. [69, 70].

Each of the four sites, labeled j = 1, ..., 4, consists of a
static optical tweezer trapping a single atom, where re-
cently demonstrated rearrangement methods [49–53] al-
low for populating each site with high fidelity. We assume
that the atoms remain in the vibrational ground states
of the microtraps throughout the sequence. Every atom
has two internal states σ =↑, ↓ which we use to implement
an effective spin-1/2 system. As a specific configuration
we suggest to use 133Cs atoms and utilize their F = 3,
mF = 2, 3 hyperfine states to represent the two spins.
Optical pumping with site-resolved addressing can then
be employed to prepare arbitrary initial spin patterns [58]
and study their dynamics under Eq. (1).

The key ingredient for our proposed implementation
of CCR interactions is to realize collective permutations
of the entire spin configuration in the plaquette. This
can be achieved by physically rotating the tweezer array
around the center of the plaquette while ensuring that the
motional and spin states of the atoms are preserved and
coherence is not lost. The effect of clockwise rotations
of the microtraps on the spin states is described by the
operator P̂ ,

P̂ |σ1, σ2, σ3, σ4〉 = |σ4, σ1, σ2, σ3〉. (2)

Optimized trajectories can be chosen to cancel heating
effects from the motion [62]. These require a timescale
set by the quantum speed limit that scales as the inverse
energy gap of each traps trot ∼ 1/∆ε. For deep trapping
potentials where ∆ε ≈ 150 kHz, rotation times of trot <
10µs are achievable.

In contrast to Eq. (2), the effective Hamiltonian leads
to a superposition of permuted and non-permuted states
in every infinitesimal time step ∆t, as can be seen from

a Taylor expansion: e−iĤCCR∆t = 1− iĤCCR∆t. To cre-
ate such superposition states in our time evolution, we
assume that every atom has a second internal degree of
freedom labeled by τ = 0, 1. Concretely we propose to re-
alize the new states |τ = 1〉|σ〉 in 133Cs atoms by F = 4,
mF = 3, 4 hyperfine levels, where mF = 3 (mF = 4)
corresponds to σ =↓ (σ =↑). These additional levels will
be used as auxiliary states, whereas the states |τ = 0〉|σ〉
introduced before – implemented as F = 3, mF = 2, 3
levels in 133Cs– realize the physical spin states.

One part of our protocol consists of a permutation of
the spins σ, but only in the manifold of auxiliary states.
This step requires a total time trot and can be described
by the unitary transformations

Û+ =
∏
j

|1〉j〈1|⊗ P̂ +
∏
j

|0〉j〈0|⊗ 1̂σ, Û− = Û†+ (3)
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To implement this evolution, two sets of optical tweezer
arrays can be used, of which only one is rotating. We sug-
gest to realize it by the near-magic wavelength λmagic ≈
871.6 nm in 133Cs which strongly confines atoms in the
state τ = 1 but almost does not affect atoms in τ = 0. By
applying Û± to superposition states with either all atoms
in τ = 1 or all atoms in τ = 0, one can realize the de-
sired superpositions of permuted and non-permuted spin
configurations. Such states can be realized by collective
π-pulses conditioned upon a control qubit trapped in the
center of the plaquette [63], as described next.

If the control atom is in the state |+〉c it is transferred
to a Rydberg state |r〉c with a resonant π-pulse and Rabi
frequency Ωr, see Fig. 1. If the control atom is in state
|−〉c, the laser Ωr is off-resonant and no Rydberg ex-
citation is created. Next a Raman transition by lasers

Ω
(1)
j , Ω

(2)
j through an intermediate Rydberg state |r〉j

is used to implement a π-pulse transferring the physical
states |0〉j to |1〉j , without changing their spin state |σ〉j .
In the presence of a coupling field ΩEIT that establishes
two-photon resonance to the Rydberg state with each
Raman laser, electromagnetically induced transparency
(EIT) [64] suppresses the transition |0〉j ↔ |1〉j . How-
ever, the EIT condition is lifted by the Rydberg block-
ade mechanism if the control atom is in the Rydberg
state |r〉c [63], enabling the transfer. After the transfer
is complete, another π-pulse by Ωr is applied to the con-
trol atom. This ensures that the control atom remains
trapped during the protocol, even if the Rydberg excited
state is not subject to a trapping potential. In summary,
this part is described by the unitary transformation

Ûsw = |+〉c〈+| ⊗
(∏

j

|1〉j〈0|+ h.c.

)
⊗ 1̂σ

+ |−〉c〈−| ⊗ 1̂τ ⊗ 1̂σ. (4)

The total time required to implement this switch (sw) is
denoted by tsw.

Finally, we need to introduce quantum dynamics be-
tween the states of the control atom. This can be realized
by a dressing laser Ωc driving transitions between |±〉c,
at a detuning ∆c. These dynamics take place over a pe-
riod of time tc and are described by the unitary evolution

Ûc = e−iĤctc with Ĥc = ∆c|+〉c〈+|+ Ωc
(
|+〉c〈−|+ h.c.

)
.

During the remaining steps of the protocol, Eqs. (3) -
(4), we assume that Ωc = 0 is off and the control atom
picks up a phase ±ϕc if it is in state |+〉c. This phase
can be adjusted by the detuning ∆c and the duration
trx = 2tsw + trot, during which the time evolution of the
control is Û±ϕc

= |+〉c〈+|e∓iϕc + |−〉c〈−|.
The complete protocol is summarized in Fig. 2. It

consists of a periodic repetition of the individual steps
described above. At the discrete time steps nT , where
T = 2(tc + trx), the unitary evolution is described by an

effective Hamiltonian Ĥeff:

e−inT Ĥeff = (ÛT )n =
(
Ûrx,+ÛcÛrx,−Ûc

)n
, (5)

FIG. 2. Proposed protocol: The sequence in (a) is repeated
periodically with period T = 2(tc + trx). When tc � 2π/∆c,
1/Ωc it implements a trotterized time evolution of the effec-
tive Hamiltonian Eq. (8), which realizes CCR couplings when
∆c � Ωc. The individual time steps are illustrated in (b).

where we defined Ûrx,± = Ûsw

(
Û±ϕc

⊗ Û±
)
Ûsw. As will

be shown below, Ĥeff realizes CCR interactions with a
tunable phase φ = −ϕc and amplitude

K = − 1

2T
(tc∆c)

(
Ωc
∆c

)2

(6)

provided that

tc � 2π/∆c, Ωc � ∆c. (7)

Now we estimate the strength |K| of the CCR interac-
tions that can be achieved with the proposed setup. To
satisfy Eq. (7) we assume Ωc = 0.2∆c and tc∆c = 0.4.
For a rotation time trot = 10µs and assuming tsw, tc �
trot a reasonable strength of K/~ = 50Hz × 2π can be
achieved. This requires Ωc/2π � 1.3kHz, which can be
easily realized; the condition tsw � 10µs can also be
met, as the Rydberg π-pulses on the control atom can be
executed in ∼ 100 ns each and the Raman transfer be-
tween the states |0〉j and |1〉j can be driven with coupling
strengths above 1 MHz.

Effective Hamiltonian.– Next we show that our proto-
col realizes the Hamiltonian in Eq. (1). When tc/2π �
1/∆c, 1/Ωc, we can write Ûc = 1 − iĤctc and calculate

exp[−iĤeffT ] to leading order in tc. Eqs. (3) - (4) yield

Ĥeff =
tc
T

{
2∆c|+〉c〈+|+

+ Ωc

[
|−〉c〈+|

(
1 + eiϕc P̂ †

)
+ h.c.

]}
. (8)

When Ωc � ∆c we can eliminate the state |+〉c which
is only virtually excited. This further simplifies the ef-
fective Hamiltonian and we obtain

Ĥeff = K
(

2 + e−iϕc P̂ + eiϕc P̂ †
)
. (9)

Up to the energy shift 2K this realizes CCR interactions
in an isolated plaquette. The result can be extended to
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FIG. 3. Phase diagram of the CCR Hamiltonian on a ladder,
obtained from DMRG in a system with 64 sites: different ob-
servables are evaluated in the ground state of the Hamiltonian
(1) to characterize the phases. Upon varying φ, three different
phases can be identified: A topological Haldane phase featur-
ing a vanishing gap in the entanglement spectrum (a) and
edge states with a non-zero local magnetization for Sz

tot = 1
(b); A symmetry-broken phase around φ = π with long-range
ferromagnetic correlations (c); And a symmetric phase for
small φ, where the staggered vector chirality remains non-
vanishing over long distances (d).

multiple plaquettes by implementing the trotterized time
step ÛT interchangeably on inequivalent plaquettes.

Two-leg ladder with CCR.– Now we discuss the physics
of the SU(2) CCR Hamiltonian in a two-leg ladder. We
vary the phase φ in the Hamiltonian (1) with K = 1
and calculate the ground state phase diagram using
the density-matrix renormalization group (DMRG). For
φ = π, the ground state has ferromagnetic correlations,
see Fig. 3 (c). It can be readily seen that the variational

energy 〈ĤCCR(π)〉 is minimized for ferromagnetic config-
urations. In the sector Sztot = 0 used in our DMRG in
Fig. 3 (c), we find phase separation with two ferromag-
netic domains of opposite magnetization.

At intermediate φ we find an emergent Haldane phase,
with two-fold degenerate states in the entanglement spec-
trum, see Fig. 3 (a). For a finite Sztot = 1 the expectation

value 〈ŜzL,1〉 at the edge is non-zero, see Fig. 3 (b). The
spin gap ∆ES = E0,S=1 − E0,S=0, defined as the differ-
ence between the ground state energy with and without
finite total magnetization, is zero in this phase, since the
additional spin can be placed in the spin-1/2 topological
edge states of the system without increasing the total en-
ergy. We corroborate this picture further by considering
the K − K ′ model with alternating strengths K, K ′ of
the CCR interactions on adjacent plaquettes. In the SM

we provide an explicitly derivation of a spin-1 model with
a gapped Haldane ground state [60, 65] for φ = π/2 and
K ′ � K.

For small values of φ, the ground state of the CCR
Hamiltonian is a dominant vector chirality phase, as dis-
cussed in Ref. [66]. This phase is characterized by corre-

lations of the form Ŝx,y × Ŝx′,y′ in a staggered arrange-
ment around each plaquette. We find that the staggered
correlation between different rungs, measured from the
center L/2 of the chain,

(−1)x
〈(

ŜL/2,1 × ŜL/2,2

)
·
(
ŜL/2+x,1 × ŜL/2+x,2

)〉
,

(10)
decays slowly as a function of the distance x and retains
significant non-zero values over the considered system
sizes, see Fig. 3 (d). The transition between the domi-
nant vector chirality and Haldane phases is a symmetry-
protected topological (SPT) phase transition.

Using the global SU(2) symmetry, the staggered vec-

tor chirality becomes 6
〈
ŜxL/2,1Ŝ

y
L/2,2

(
ŜxL/2+x,1Ŝ

y
L/2+x,2

−ŜyL/2+x,1Ŝ
x
L/2+x,2

)〉
(−1)x. Measuring it requires ac-

cess to two four-point functions of the form 〈Ŝµi Ŝνj Ŝλk Ŝ
ρ
l 〉

which can be detected by making use of local addressing
techniques, see e.g. [67]. To detect the Haldane phase
experimentally, we propose to study weakly magnetized
systems and image the topological edge states. Alterna-
tively, one could work in the plaquette basis (see SM) and
measure the Haldane string order parameter. An inter-
esting future extension would be to use machine learning
techniques to retrieve non-local order parameters from a
series of quantum projective measurements.

Summary and Outlook.– In summary, we propose a
general method for implementing multi-body interactions
in ultracold atom experiments using optical tweezer ar-
rays. The approach is particularly useful in the pres-
ence of additional, e.g. global SU(N) spin, symmetries.
Specifically, we consider a four-body cyclic ring exchange
term, which can be realized with a combination of multi-
qubit gates based on Rydberg states and movable optical
tweezers. We numerically study the ground state of the
cyclic ring exchange Hamiltonian and find different dom-
inant correlation functions as the complex phase of the
ring exchange term is varied.

Our work paves the way for future studies of the in-
terplay between ring-exchange and pair-exchange terms,
as discussed in Ref. [68] for the non-chiral case φ = 0.
In the experimental realization proposed here, it is con-
ceptually straightforward to introduce mobile holes into
the system, leading to a finite doping. The interplay be-
tween spin and charge degrees of freedom could be further
studied by adding direct tunneling terms, which lead to
rich Hamiltonians in the spirit of t− J like models. The
physics of this type of model is completely unknown and
provides an exciting prospect for future theoretical and
experimental research. The proposed protocol is versa-
tile enough to implement larger classes of models with
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multi-spin interactions, such as the J −Q model [41] (as
we discuss in the SM). In two dimensions, this model
features a phase transition between an antiferromagnet
and a valence-bond solid, which has been proposed as a
candidate for a deconfined quantum critical point [41].
Moreover, the experimental protocol can be varied to
study different types of problems, such as discrete time-
evolutions of complex models or impurity models, which
can be realized by an inclusion of the control qubits into
the models.
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