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We report a stable and efficient complex Langevin sampling scheme for performing approximation-
free numerical simulations directly on the path-integral coherent-states field theory for an assembly
of interacting bosons. We apply the method to generate the λ line of critical phase transitions
associated with Bose-Einstein condensation (BEC) in a model φ4 scalar field theory. The new
approach enjoys near-linear scaling in the resolved (d+ 1) spatial / imaginary-time dimensions and
should be particularly efficient for the study of dense systems at low temperature.

PACS numbers: 67.10.Fj, 67.85.Hj, 67.25.dj

Introduction: Low-temperature assemblies of identical
bosons exhibit fascinating quantum phenomena, includ-
ing superfluidity[1, 2] and Bose-Einstein condensation[3–
5]. The development of magneto-optical trapping[6] and
evaporative cooling techniques[7] have allowed ultra-cold
gases to be confined to different kinds of atom traps at
extreme low temperatures in the nK range. This has fur-
ther enabled a significant effort in creating optical lattices
to study fundamental many-body phenomena, including
the quantum critical point at the crossover from super-
fluid to Mott insulator[8–11].

Computer simulations have an important role to play
in low-temperature physics in guiding experiment design
and interpreting outcomes. The dominant simulation ap-
proach for finite-temperature, equilibrium quantum sta-
tistical mechanics of identical bosons in continuous space
is provided by path-integral Monte Carlo[12] (PIMC),
which uses the position representation of the thermal
density matrix to sample particle degrees of freedom
at a discrete set of imaginary times. Although PIMC
has been successfully applied to a wide range of finite-
temperature quantum many-body problems[12–17], and
advanced PIMC sampling algorithms have been devel-
oped (e.g., the continuous-space worm algorithm[18]),
one drawback of PIMC remains the requirement to track
the coordinates of every particle at numerous imaginary-
time intervals, and the need to explicitly sample particle
exchange permutations to correctly symmetrize the ther-
mal density matrix. This renders the method consider-
ably more demanding at low temperature and/or high
particle density.

Our work begins with the second-quantized descrip-
tion of a many-boson partition function, with particle ex-
change statistics embedded in the commutation relations
of the raising and lowering operators of the many-body
Hilbert space. By transforming the path integral to the
basis of bosonic coherent-states[19], a field-theory repre-
sentation emerges that is implicitly symmetric in the bo-
son coordinates, removing the requirement to explicitly

sample particle exchange permutations. However, the
resulting field theory contains a sign problem: the statis-
tical weight, which contains the exponential of an action
functional that is extensive with system size, has a wildly
oscillating phase with variations in the coherent-states
fields, resulting in exponentially vanishing normalization
factors that render sampling intractable. Since the ac-
tion is analytic in the field variables for such bosonic
theories, complex Langevin (CL) sampling proves to be
a general technique to bypass this sign problem[20, 21] by
adaptively sampling along near-stationary-phase trajec-
tories in an analytically continued field theory. Although
there is no general guarantee of convergence, it has been
proven[22] that complex Langevin simulations that con-
verge to time-independent ensemble averages are free of
any bias. Despite the promise of implicit symmetriza-
tion without a sign problem, the adoption of the CL ap-
proach has been hindered by the relative lack of stable
and efficient algorithms, apart from limited application
to model systems in high-energy physics[23–25]. In this
Letter, we introduce a new general complex-Langevin al-
gorithm for sampling of the coherent-states field theory of
a low-temperature assembly of bosons and demonstrate
its application by mapping the λ line of critical phase
transitions in a φ4 scalar field theory.
Methods: The path-integral representation of the grand
partition function, Ξ, in a basis of spinless-boson
coherent-state fields, ϕn(r), where n ∈ [0, Nτ ] is a dis-
crete imaginary-time index, can be written as

Ξ (µ, V, T ) =

Nτ−1∏
n=0

∫
ϕNτ=ϕ0

D (ϕ?n, ϕn) e−S[{ϕ?n},{ϕn}].

(1)
The grand-partition function involves a functional inte-
gral over real and imaginary parts of the complex-valued
fields, ϕn(r), which are taken with periodic boundary
conditions in imaginary time, ϕNτ (r) = ϕ0(r). The
complex-conjugate field is denoted ϕ?n(r). The action
functional, S, contains the link between imaginary time
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slices, one-body operators for kinetic energy, external po- tential Uext and chemical potential µ, and a two-body
term for pair interactions between bosons, v:

S [{ϕ?n} , {ϕn}] =

Nτ−1∑
n=0

∫
drϕ?n(r)

[
ϕn(r)− ϕn−1(r) + ε

(
− ~2

2m
∇2 + Uext(r)− µ

)
ϕn−1(r)

]

+
ε

2

Nτ−1∑
n=0

∫
dr

∫
dr′ ϕ?n(r)ϕn−1(r)v (|r− r′|)ϕ?n(r′)ϕn−1(r′), (2)

where ε = β/Nτ and β = 1/kBT . In this work, we em-
ploy periodic boundary conditions in spatial coordinates
throughout.

Thermodynamic observables, e.g., O, can be
written as ensemble averages over field configura-

tions O =
〈
Õ [ϕ,ϕ?]

〉
, of a coherent-states field

operator Õ [ϕ?, ϕ], where the average is taken
with a complex-valued statistical weight exp(−S).
Example operators include the particle number,
Ñ [ϕ,ϕ?] = 1

Nτ

∑Nτ−1
n=0

∫
drϕ?n(r)ϕn−1(r), the density

matrix, ρ̃ (r, r′; [ϕ,ϕ?]) = 1
Nτ

∑Nτ−1
n=0 ϕ?n(r)ϕn−1(r′), and

the imaginary-time Green function, G̃n (r, r′; [ϕ,ϕ?]) =
ϕ?0(r)ϕn−1(r′). Note that while thermodynamic observ-
ables are necessarily real-valued, instantaneous operator
values will be complex prior to ensemble averaging.

Since the action functional in Eqn. 2 is complex val-
ued and extensive, the coherent-states field theory suffers
from a sign problem that renders traditional sampling
methods practically inapplicable. Complex Langevin[20,
21] (CL) dynamics is a fictitious stochastic dynamics
that bypasses the sign problem in sampling the complex-
valued statistical weight of the field theory. Within this
approach, both the real and imaginary parts of the field
are treated as independent and are individually analyt-
ically continued to the full complex plane; a stochas-
tic process then samples field configurations, evolving to
near-stationary-phase trajectories, and operator averages
are computed over the fictitious time. Following our algo-
rithmic development for a similar form of classical poly-
mer field theories[26], we have found that an off-diagonal
relaxation scheme that decouples ϕ and ϕ? to linear order
allows for stable time stepping of the complex Langevin
equations. In this scheme, the CL equations of motion
become

∂tϕn(r, t) = −δS [{ϕ?n} , {ϕn}]
δϕ?n(r, t)

+ γn(r, t)

∂tϕ
?
n(r, t) = −δS [{ϕ?n} , {ϕn}]

δϕn(r, t)
+ γ?n(r, t) (3)

where ϕn and ϕ?n are understood to be indepen-
dent, complex-valued fields, and t is the fictitious
(Langevin) time. These equations include relaxation

terms from cross functional derivatives of the action
and driving noise. In order to satisfy the fluctuation-
dissipation theorem for this dynamics selection, the
Langevin noise terms must be appropriately correlated:

γn(r, t) = 1√
2

(
η

(1)
n (r, t) + iη

(2)
n (r, t)

)
, where the η are

real-valued Gaussian random variables with variance〈
η

(i)
n (r, t)η

(j)
m (r′, t′)

〉
= 2δijδnmδ (r− r′) δ (t− t′), and

γ?n(r, t) is the complex conjugate of γn(r, t). The scheme
presented here is equivalent to one obtained[24] by writ-
ing conventional CL equations of motion[20, 21] for real-
valued fields u(r), v(r) that are subsequently complexi-
fied, with ϕ(r) ∝ u(r) + iv(r) and ϕ?(r) ∝ u(r)− iv(r).

We develop a pseudospectral method for sampling
Eqn. 3. Functions of spatial coordinates are trans-
formed according to the Fourier convention gk =
V −1

∫
dr f(r) exp(−ik.r), where k are translation vectors

of the reciprocal cell: 2πL−1 (l,m, n) for l,m, n ∈ Z, as-
suming a cubic simulation cell of side L. Similarly, func-
tions of the discrete imaginary-time variable are trans-
formed to imaginary Matsubara frequencies using the
Fourier convention gm = N−1

τ

∑Nτ−1
n=0 fn exp(−inεωj)

with ωj = 2πj/β for j ∈ Z. The resulting continuous-
time CL equations of motion, which are approximation
free in the Nτ →∞ limit, are:

∂tψkj(t) = −Akjψkj(t) + F2 (γn(r, t)) (4)

− F2 [εwn (r, t; [{ϕ?n} , {ϕn}])ϕn−1(r, t)]

∂tψ
?
kj(t) = −A?kjψ?kj(t) + F2 (γ?n(r, t)) (5)

− F2

[
εwn+1 (r, t; [{ϕ?n} , {ϕn}])ϕ?n+1(r, t)

]
where Akj = 1 −

(
1− ε~2k2/2m+ εµ

)
e−2πij/Nτ ,

wn(r) = Uext(r) +
∫
dr′ v (|r− r′|)ϕ?n(r′)ϕn−1(r′),

F2 (fn(r)) denotes the Fourier transform over both space
and imaginary time, and ψkj = F2 (ϕn(r)), ψ?kj =
F2 (ϕ?n(r)). Note that while ψ?k,j and ψk,j denote two
independent complex variables in the complex Langevin
sampling scheme, the linear coefficient A?k,j is precisely
the complex conjugate of Ak,j . Importantly, Eqns. 4
and 5 provide insight into expected numerical time-
integration stability for finite Nτ . Analytic linear sta-
bility demands that < (Akj) > 0, which is also the condi-
tion for the ideal-gas quadratic action to be positive defi-
nite, required for the Gaussian-integral identities used to
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construct the partition function. It is thus easily demon-
strated that 0 < ε

(
~2k2/2m− µ

)
< 2 is required for

linear stability, so that Nτ > β
(
~2k2

max/2m− µ
)
/2 de-

fines a minimal number of imaginary-time samples for the
wave vector cutoff, kmax, in the computational lattice.

To numerically propagate the pseudospectral equa-
tions of motion in time by discrete steps ∆t, we take the
linear coefficient Akj as an integrating factor over the
∆t interval resulting in an exponential-time-differencing

(ETD) algorithm[27, 28]. Values of non-linear compo-
nents are taken from the previous time step over the
whole ∆t interval resulting in a method that is weak first-
order accurate with excellent stability. Linear contribu-
tions to the equation of motion are integrated exactly
over the interval, hence purely linear problems (i.e., those
for which v = 0) are in principle accurately propagated
to all orders in ∆t. The resulting algorithm is

ψ
(l+1)
kj ≈ e−Akj∆tψ

(l)
kj −

[
1− e−Akj∆t

Akj

]
F2

[
εw(l)

n (r)ϕ
(l)
n−1(r)

]
+Rlkj (6)

(
ψ?kj
)(l+1) ≈ e−A

?
kj∆t

(
ψ?kj
)(l) − [1− e−A

?
kj∆t

A?kj

]
F2

[
εw

(l)
n+1(r)

(
ϕ?n+1(r)

)(l)]
+
(
Rlkj

)?
(7)

where Rkj is a complex-valued Gaussian noise in-

tegrated over ∆t to give a variance
〈
Rl

′

k′j′R
l
kj

〉
=

V −1N−1
τ δk,−k′δj,−j′δl,l′ [(1− exp(−2Akj∆t)/2Akj)],

and superscripts indicate time-step indices, l = t/∆t.
With the use of fast Fourier transform (FFT) methods,
this algorithm has a computational cost that scales
approximately linearly with both system volume and
Nτ , while the cost per CL time step is independent of
the number of bosons.

Results: We begin by demonstrating that our sampling
scheme can reproduce the thermodynamics of an ideal
Bose gas with Uext(r) = 0, v(r) = 0. Fig. 1 shows the
logarithm of the activity, ln(z) = βµ, versus a dimension-
less particle density that is independent of boson mass.

We compare to a reference result[29] NΛ3

V = Li3/2(z),

where Λ = h (2πmkBT )
−1/2

is the de Broglie thermal
wavelength, and Li is the polylogarithm function, which
is a good closed-form approximation to the exact den-
sity if the ground-state population vanishes (i.e., outside
BEC).

For low densities, an ideal Bose gas behaves thermo-
dynamically as a classical assembly of distinguishable
particles obeying Boltzmann statistics. As the phase-
space density increases, quantum effects become increas-
ingly important. At NΛ3/V ∼ 1, the average inter-
particle spacing is on the order of the de Broglie ther-
mal wavelength, indicating an approximate crossover to
quantum degeneracy and an increased importance of
particle-exchange statistics. All particle exchanges along
the imaginary time paths are properly counted by the
coherent-states field theory, without any special sampling
requirements. The crossover to BEC (not shown in Fig.
1) can be approximated by Li3/2(1) ≈ 2.61, correspond-
ing to the chemical potential µ → 0−; beyond this limit
the polylogarithm approximation to the phase-space den-
sity breaks down, because that result was derived assum-

ing zero population of the ground state. We note that in
this example, CL simulations are also restricted to µ < 0
because there is no repulsion to stabilize against diver-
gent particle numbers obtained once µ > ε0, where ε0
is the ground-state energy of the one-body Hamiltonian
(i.e., the action is unbounded, and the BEC phase is not
directly accessible to the simulation when v = 0).
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FIG. 1. (Color online): Equation of state for a Bose ideal gas
computing using the coherent-states complex-Langevin sam-
pling method (red points). ln(z) = βµ is the logarithm of the
activity, and the phase-space density is made dimensionless
using the thermal wavelength Λ. The reference result is the
3/2 polylogarithm (see body text). Error bars are stochastic
errors of the mean.

A φ4 scalar field theory results from a pair interaction
potential v (r) = v0δ (r). The parameter v0 can be chosen
as a pseudopotential to mimic a realistic inter-atomic po-
tential in a low-energy approximation by preserving the
s-wave scattering length, as, as v0 = 4π~2asm

−1. In the
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present case, we treat v0 as an arbitrary model parame-
ter and compare CL simulation predictions for the λ line
of critical phase transitions to analytic theory. The refer-
ence critical temperature for this model, obtained from a
renormalization group analysis and mapping the critical
behavior onto a classical spin model[30–32], is

kBTc =
2π~2

m

(
µ

2v0ζ (3/2)

)2/3

, (8)

where ζ is the Riemann zeta function.
For our simulations of the φ4 theory, we write the

action with a minimal set of parameters by choosing
a nondimensionalization strategy that scales lengths by
the thermal wavelength, Λref , at a reference tempera-
ture, Tref , so that T ? = T/Tref and µ? = µ/kBTref

remain explicit in the action. We locate the crit-
ical temperature using the Bose condensate fraction,〈
Ñ0

〉
/
〈
Ñ
〉

, as an order parameter, where Ñ0 =

V N−1
τ

∑Nτ−1
n=0 ϕ̂?n,k=0ϕ̂n−1,k=0 and ϕ̂, ϕ̂? are the spa-

tial Fourier transforms of ϕ, ϕ?. Although the order
parameter in the thermodynamic limit is non-zero only
for T < Tc, in common with other critical phase tran-
sitions, finite-size errors dramatically modify the value
in the region of Tc making the phase transition difficult
to extract, as shown in Fig. 2(a). We apply a finite-
size scaling analysis[33], shown in Fig. 2(b), to extract
Tc. This approach is explained in detail in the Sup-
plementary Material[34], and two other forms of scal-
ing analysis are there shown to be consistent. Finally,
Fig. 3 shows the full µ-dependent CL phase diagram for
v?0 = v0/(kBTrefΛ

3
ref ) = 0.005 and 0.010 compared to

Eqn. 8.
A thorough analysis of factors affecting computational

cost is beyond the scope of the present work, but we
report here the approximate timing for a single simula-
tion on a single hardware platform for illustration. A
large-cell simulation sampled with a 32× 32× 32 spatial
collocation mesh and Nτ = 100 takes 10–15 ms per CL
time step on an NVIDIA Tesla V100 GPU[35]. We have
found 2.5×106 time steps to yield an error of the mean of
the condensate fraction below 0.1%, requiring 7–11 hours
on the V100 GPU.

Canonical Ensemble: The field theory presented here
is formulated at fixed chemical potential, and direct con-
trol of particle number is not immediately possible. How-
ever, there are often situations where constraining par-
ticle number is convenient or required, e.g., in limit-
ing simulations of bosons in an optical lattice to inte-
ger fill fractions[11]. In order to perform simulations in
the canonical ensemble, we write the canonical partition
function as

Z(N,V, T ) =

∫
D (ϕ,ϕ?) δ

(
N − Ñ [ϕ,ϕ?]

)
e−S0 , (9)

where S0 is equal to the action of Eqn. 2 with µ = 0,
and Ñ [ϕ,ϕ?] is the particle-number operator introduced
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FIG. 2. (Color online): (a) the Bose condensate fraction for
various simulation cell sizes (L = 3.05–7.61 in multiples of
Λref), µ

? = 0.045, and v?0 = 0.005, shows large finite-size
errors. Errors of the mean are smaller than the symbol size.
Numerical discretization parameters are ∆t = 0.05, Nτ = 50,
and spatial collocation mesh spacing ∆x = 0.28 Λref . (b)
Finite-size scaling analysis of the condensate fraction allows
T ?c to be extracted. In this work, ν = 0.671 and p = 0.45 (see
Supplementary Material[34]).
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FIG. 3. Critical temperature versus chemical potential,
T ?c (µ?), for the φ4 theory. Points are from complex Langevin
(CL) simulations and finite-size scaling analysis (see Supple-
mentary Material[34]); lines are from Eqn. 8.
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previously. By writing the Dirac delta function in ex-
ponential notation, a new scalar integration variable is
introduced:

Z(N,V, T ) =
1

2π

∫ ∞
−∞

dw

∫
D (ϕ,ϕ?) e−S0−iw(N−Ñ [ϕ,ϕ?]).

(10)
By identifying iw = βµ, the new ensemble can be sam-
pled using the same CL equations as those for the grand-
canonical ensemble, but with a complex-valued, time-
dependent chemical potential sampled according to the
following equation of motion:

∂tµ (t) = λµβ
−1
(
N − Ñ [ϕ,ϕ?]

)
+ iηµ(t), (11)

where ηµ is a real-valued Gaussian-distributed random
variable with variance 〈ηµ (t) ηµ (t′)〉 = 2λµδ (t− t′) and
λµ is a mobility coefficient that controls the rate of
evolution of µ relative to the coherent-states fields.
We time step this equation—in tandem with the field
CL equations—using an explicit Euler-Maruyama al-
gorithm. A numerical demonstration of the particle-
number-constraint method for the ideal Bose gas is shown
in the Supplementary Material[34]. The strategy de-
scribed here constitutes a general way of adding con-
straints in sampling the field theory.
Conclusions: We have presented a new algorithm for di-
rectly simulating the coherent-states path integral field
theory of interacting bosons using complex Langevin dy-
namics and pseudospectral collocation with exponential
time differencing. We have demonstrated the method by
extracting the λ line of critical phase transitions of a φ4

scalar field theory. Although the field theory is formu-
lated and directly applied in the grand-canonical ensem-
ble, we have shown a route to simulations in the canonical
ensemble for the cases that require precise control of the
particle number.

The method presented here is broadly applicable to
bosonic quantum field theories. It immediately general-
izes to continuous space models with arbitrary pair in-
teractions and external confining potentials (e.g., optical
lattices[11]). Discrete lattice models, such as the Bose-
Hubbard model, require only minor modifications to the
linear coefficients Akj of Eqns. 4–5 to reflect the discrete
kinetic-energy (hopping) operator. Similarly, a vast array
of quantum-spin lattice models (ferromagnetic, antiferro-
magnetic, w/o frustration) in second-quantized form us-
ing the Schwinger boson representation[36] should be ac-
cessible to the present algorithm. Although convergence
of the complex Langevin trajectories is not guaranteed
and is yet to be tested on this diverse set of models, in
the cases that convergence is achieved the exponential
of the action is guaranteed to be correctly sampled and
equilibrium properties can be computed without bias.
Finally, by transforming the current imaginary time de-
pendence to a closed real-time Keldysh contour[37], a
broad range of finite temperature, quantum dynamical

phenomena could be explored. This includes both real-
time Green functions for linear response properties and
far-from-equilibrium dynamics.

We thank Matthew Fisher and David Weld for help-
ful discussions. KTD and GHF were partially sup-
ported by the National Science Foundation grant DMR-
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