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Quantum mechanics postulates that measuring the qubit’s wave function results in its collapse,
with the recorded discrete outcome designating the particular eigenstate the qubit collapsed into.
We show this picture breaks down when the qubit is strongly driven during measurement. More
specifically, for a fast evolving qubit the measurement returns the time-averaged expectation value of
the measurement operator, erasing information about the initial state of the qubit, while completely
suppressing the measurement back-action. We call this regime “quantum rifling”, as the fast spinning
of the Bloch vector protects it from deflection into either of its two eigenstates. We study this
phenomenon with two superconducting qubits coupled to the same probe field and demonstrate
that quantum rifling allows us to measure either one of the two qubits on demand while protecting
the state of the other from measurement back-action. Our results allow for the implementation of
selective read out multiplexing of several qubits, contributing to efficient scaling up of quantum
processors for future quantum technologies.

The Stern-Gerlach experiment, originally conducted to
demonstrate quantization in atomic-scale systems[1], is
the prototypical example of a quantum measurement with
a linear detector: an electron (or qubit) flying through
a magnetic field is deflected from its straight path, with
probabilities dependent on the qubit’s initial state (see
Figure 1a). The measurement projects the state of the
qubit onto either of its two spin eigenstates: ±~/2.
Driving the qubit with Rabi frequency ΩR during the

measurement leads to competition between the state evolu-
tion and the measurement projection. Such a scenario has
been studied theoretically [2–4] and experimentally [5, 6]
in the strong measurement regime ΩR � Γm, where Γm
is the measurement rate at which information is extracted
from the qubit. This regime is commonly described by the
Quantum Zeno effect[7]: a strong quantum measurement
freezes the qubit’s state, with occasional transitions occur-
ring as sudden quantum jumps[8–12] with rate ∝ Ω2

R/Γm.
The regime of strong driving ΩR � Γm, referred to as

the sub-Zeno limit, has attracted attention in the context
of continuous weak measurements[13]. When the probe’s
bandwidth δω exceeds the Rabi frequency, ΩR < δω, sig-
natures of coherent Rabi oscillations appear in the detec-
tor signal [14–17]. It has been shown that the back-action
introduced by the measurement imposes a fundamental
limit on the detection of oscillations and can be used to de-
termine the quantum efficiency of the detector[15, 18, 19],
or even to test the Leggett-Garg inequality[20, 21]. The
opposite limit ΩR > δω, where the Rabi frequency ex-
ceeds the bandwidth, is suitably described by the average
Hamiltonian theory [22]. This regime however, has not
yet been investigated in the context of continuous qubit
measurement neither theoretically nor experimentally.

In this Article, we study the measurement of a continu-
ously driven qubit in the regime where the Rabi frequency

dominates all other relevant parameters: ΩR � Γm, δω.
First, we show that when the probe’s bandwidth is not
sufficient to follow the qubit’s state, the probe signal
reveals only the expectation value of the time-averaged
measurement operator 〈σz(t)〉 = 0, leading to the erasure
of any information contained in the probe about the qubit
state and thus canceling the measurement back-action on
the qubit. In the language of the Stern-Gerlach exper-
iment, the fast rotation of the spin allows the electron
to fly through the measurement apparatus in a straight
line without experiencing a force. Thus we call this effect
quantum rifling, in analogy to the rifling of bullets, which
stabilizes the trajectory of the projectile (see Figure 1b).
We then investigate the driving threshold to achieve rifling
by measuring the Rabi decay rate of a probed qubit for dif-
ferent probe field amplitudes. Finally, using tomographic
reconstruction of the qubit’s state, we demonstrate read
out multiplexing of two qubits coupled to the same mea-
surement apparatus: quantum rifling is used to suppress
the measurement back-action on one of the qubits on
demand, while still extracting full information about the
state of another qubit.

Our system consists of two superconducting trans-
mon qubits[23] coupled dispersively to a microwave
resonator[3](see Supplementary information Sec. I for
details). The driven stationary microwave mode passing
through the resonator acts as our measurement probe: its
interaction with the qubit leads to a qubit state-dependent
dispersive shift of the resonator frequency. Rifling of the
qubit state is achieved by applying a resonant Rabi drive
to a charge line coupled directly to the qubit. For weak
Rabi driving, the resonator transmission measurement
returns two peaks weighted by the corresponding pop-
ulations of the ground and excited states of the qubit
(see Figure 1c). When the driving strength reaches a
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FIG. 1. Quantum rifling in a Stern-Gerlach setup. a, Measurement of a spin initially prepared in a superposition state.
The magnetic field measures the spin by deflecting its flight path in a direction dependent on the measured spin orientation.
b, Measurement during rifling; when the spin is stronlgy driven during measurement the magnetic field cannot discriminate
between spin states and the spin’s flight path is undisturbed. c, Detection mechanism of the qubit state in our setup; the
resonator experiences a qubit state-dependent shift in its resonance frequency by ±χ relative to its bare frequency ωr in the
rotating frame. Thus after averaging the results of experiment (a) one would observe the red and blue resonator transmission
curves. During quantum rifling, when the qubit’s state is driven resonantly with its transition energy, the resonator’s resonance
shifts to ωr, leading to the dashed transmission curve following the averaging of the experiment presented in (b).

threshold, the transmission spectrum yields a single cen-
tral peak analogous to a straight flight-path for the spin
in the Stern-Gerlach apparatus.

Figure 2a shows the transmission spectroscopy of the
resonator when Qubit 1 is continuously driven on reso-
nance. Varying the qubit drive power we identify different
characteristic regimes of the measurement. For low drive
power the qubit remains in its ground state and only a
single transmission peak is visible at ωr + χ. As the Rabi
drive becomes sufficient to excite the qubit, a second peak
appears at ωr − χ in the cavity spectrum. The two peaks
reach equal height when the qubit is saturated by the
drive and the populations of the qubit in its ground and
excited state becomes equal.
As ΩR increases the two cavity peaks split, and the

outer diverging peaks vanish with increasing drive. The
inner peaks converge to a single peak at the average fre-
quency ωr, which we identify as the onset of the quantum
rifling regime. When the Rabi drive becomes compara-
ble to the transmon anharmonicity, the central cavity
peak splits again as we populate higher levels, setting
an upper bound on the rifling power (see Supplementary
information Sec. II.).

The system can be described by the Jaynes-Cummings
Hamiltonian in the dispersive regime transformed into a
doubly rotating frame at both the qubit and probe drive
frequencies ωq, ωp respectively:

H/~ = δωra
†a+ χa†aσz +

1

2
εd(a

† + a) +
1

2
ΩRσx, (1)

where δωr = ωr − ωp, a† and a are creation and annihi-
lation operators of resonator excitation modes, σx/z are
Pauli matrices acting on the qubit, εd is the probe ampli-
tude, and we assume resonant driving with the qubit’s
ground to excited state transition frequency, ωq = ωge.
Including decoherence and losses for such a system[24],

the full time-evolution is described by the master equation

ρ̇ = − i
~

[H,ρ] + κD[a]ρ+ γ↓D[σ−]ρ+
1

2
γϕD[σz]ρ, (2)

where D[o]ρ = oρo†− 1
2 (o†oρ+ρo†o) , κ/(2π) = 0.95 MHz

is the cavity decay rate and 1/γ↓, 1/γϕ are the qubit
relaxation and pure dephasing times, respectively.

We compute both numerically[25] and analytically the
steady-state of the resonator probe amplitude 〈a〉 by solv-
ing Eq. (2) (as well as its extension to a three-level trans-
mon) in the low photon number limit 〈nphoton〉 ≈ 0, plot-
ting the result in Figure 2b-c. The additional splitting of
the central resonance peak around ΩR/(2π) ≈ 100 MHz
is well accounted for by the multi-level model.
When truncated to the single cavity photon subspace,

the diagonalization of the Hamiltonian (1) for εd = 0 leads
to four eigenstates in the dressed-state picture[26, 27],
each a superposition of both atom and resonator states.
Note that these dressed states are of quantum origin
leading to entanglement between the cavity field and the
qubit, as opposed to e.g. the Mollow-tripet, where the
qubit is dressed classically. The unnormalized expressions
are:

|0±〉 ∼ |g, 0〉 ± |e, 0〉 ,

|1±〉 ∼ 2χ±
√

4χ2 + Ω2
R

ΩR
|g, 1〉+ |e, 1〉 , (3)

where |g, e〉 are the ground- and excited states of the
qubit and |n〉 are resonator states with n photons. The
corresponding eigenenergies in the rotating frame at
δωr = 0 can be found as E0± = ± 1

2~ΩR and E1± =

± 1
2~

√
4χ2 + Ω2

R.
The four cavity transmission peaks correspond to the

four transitions between eigenstates with differing pho-
ton parity (see Figure 2b dashed lines). In the limit of
ΩR � κ, E0− ≈ E0+ yielding two degenerate transitions
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|0−〉 → |1+〉|0−〉 → |1−〉|0+〉 → |1+〉|0+〉 → |1−〉

|0−〉 → |1+〉|0−〉 → |1−〉|0+〉 → |1+〉|0+〉 → |1−〉

|0−〉 → |1+〉|0−〉 → |1−〉|0+〉 → |1+〉|0+〉 → |1−〉

|0−〉 → |1+〉|0−〉 → |1−〉|0+〉 → |1+〉|0+〉 → |1−〉

c

FIG. 2. Resonator spectroscopy vs Rabi drive
strength. a, Continuous wave spectroscopy of the resonator
transmission vs. Rabi frequency. The resonator is probed by a
mean photon number of 〈nphoton〉 ≈ 0.13. The symbols below
the plot show the qubit drive strength at which linecuts are
shown in (c). b, Steady-state numerical simulation of Eq.(2)
extended to the three-level transmon model for the observable
|a〉 plotted as a function of δωr/2π and ΩR/2π, assuming a
steady-state drive and using experimental parameters quoted
in the main text. Dashed lines show the transitions in fre-
quency between the |0±〉 and |1±〉 states.The arrows under the
plot show the frequencies for the line cuts in (c). c, Compari-
son of experimental data and numerical simulations presented
in (a-b), as well as the analytical solution for a two-level qubit
at three values of the Rabi drive strength. All data have been
normalized such that the maximum amplitude without Rabi
drive is 1.

at frequencies ωr±χ. The splitting of the peaks is propor-
tional to ΩR, which becomes visible when their splitting
exceeds the linewidth ΩR/2π > κ/2π ' 1 MHz. In the
opposite limit of strong driving ΩR � χ, thus E0 ≈ E1.
The matrix elements corresponding to the outer transi-
tions at E0∓ → E1± vanish for large ΩR, making the
outer peaks disappear. The inner transitions E0± → E1±
converge in energy, merging into the central cavity peak
once their separation is too small to still resolve two peaks
|E1−E0|/~ < κ, leading to the condition for the quantum
rifling regime ΩR > ΩC = χ2/κ ≈ 2π × 16 MHz. For
larger cavity probe powers, the evolution of the trans-
mission peaks remains qualitatively the same, with less
pronounced side peaks and the critical drive amplitude ΩC
shifting to higher drive frequencies (see Supplementary
information Sec III. for details).
We have also verified that the effect of two resonator

transmission peaks merging into one can also be induced
by fast incoherent qubit dynamics (see Supplementary
information Sec. IV.). As for a qubit interacting with a
heat bath at different temperatures such that 〈σz〉 6= 0 in
the steady state, simulations show that the position in
frequency of the central peak shifts proportionally to the
asymmetry in population between the ground and excited
state (see Supplementary information Sec. II. B1).

We examine the back-action of the detector on the qubit
by measuring the relaxation rate of Rabi oscillations with
and without a simultaneous resonator tone. The qubit
relaxes due to measurement back-action and through
intrinsic losses to the environment. For low Rabi frequen-
cies, the back-action dominates this relaxation. However,
with increasing Rabi frequency the detector’s ability to
distinguish between the qubit eigenstates diminishes thus
reducing the measurement back-action, reaching zero in
the single peak regime. The results are presented in Fig-
ure 3, varying the Rabi frequency for each specific probe
power.
For a Rabi drive ΩR � ΩC , the Rabi coherence time

TR = Γ−1R is degraded by the measurement: the probe
extracts information from the qubit leading to its de-
phasing. For strong Rabi drive ΩR � ΩC , the qubit
coherence times are comparable to the standard Rabi
decay time measured without applying a simultaneous
cavity pulse. Driving the cavity with more photons leads
to a stronger suppression of the coherence time for small
Rabi frequencies, consistent with the measurement rate
being proportional to the cavity’s photon number popu-
lation. The threshold Rabi drive frequency ΩC at which
TR converges to the standard Rabi coherence time of the
qubit is, however, independent of the cavity tone strength
for low photon population (〈nphoton〉 � 1). This is in
agreement with the observed threshold drive required for
the emergence of a single cavity peak in continuous wave
spectroscopy (see Figure 2 and Supplementary informa-
tion Sec. III.).
We also numerically simulate such rifled Rabi oscilla-
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FIG. 3. Rabi decay rates vs. Rabi frequency ΩR

for different measurement strengths. a, Example of a
rifled Rabi measurement (ΩR/2π = 4.1 MHz, 〈nphoton〉 ≈ 2.1)
with overlaying numerical fit of the equation shown in the
insert. b, Pulse protocol of the rifled Rabi measurement.
The cavity pulse starts 10 ns after the qubit drive and stops
15 ns before its end. The actual read out pulse starts 5
ns after the qubit drive ends. c, Measured and simulated
rifled Rabi and standard Rabi decay rates. For a fixed probe
power, the Rabi decay rate is measured for increasing Rabi
drives following the protocol presented in (b). The values for
〈nphoton〉 are measured independently via the ac-Stark shit.
For the simulations, the average number of photons is extracted
by normalizing to the fitted curve for the lowest measurement
strength, which is assumed to match the measurement.

tions for Qubit 1 in the time domain and plot their decay
rate in Figure 3c. Note that only a single fit parameter
was used to scale the curve with lowest drive strength.

As it suppresses the measurement back-action, rifling
allows measurements on other qubits coupled to the same
detector, while keeping the rifled qubit in superposition.

To demonstrate this multiplexing capability, we perform
a two-qubit algorithm with both qubits coupled to the
same readout resonator (see Figure 4). First we prepare
a superposition of the four basis states by applying a
R
π/2
y rotation to both qubits. We then rifle Qubit 1

for 1142 ns, while performing tomography on Qubit 2,
followed by tomography on Qubit 1. We measure the
density matrix of Qubit 1 with 92.8% fidelity (corrected
for qubit decoherence), confirming the qubit remained

Ri�ing
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b
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Q 1
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FIG. 4. Sequential measurement of two qubits coupled
to the same resonator with and without rifling. a, Gate
protocol and measured single qubit density matrices. First,
both qubits are brought to full superposition by applying a
R
π/2
y rotation. Then Qubit 1 is rifled by applying a strong

coherent Rabi drive for 1142 ns, while Qubit 2 is read out via
tomography pulses followed by a cavity read out pulse, which
ends before the Rabi drive pulse on Qubit 1. Lastly, Qubit 2
is read out.b, Same as in (a), but Qubit 1 is left idle for 1142
ns instead of rifling.

in superposition following the first read out (Figure 4a).
Conversely, omitting the rifling pulse (Figure 4b) leads to
vanishing non-diagonal terms in the density matrix and
therefore to the collapse of coherence of Qubit 1, induced
by the read out of Qubit 2.

It is worth noting that following the initial Rπ/2y pulse,
the qubit can be rotated around two different axes of
the Bloch sphere: either around the x-axis, inducing full
rotations around the Bloch sphere, or around the y-axis,
effectively spin-locking the qubit[28]. We report that in
both cases the coherence is preserved (see Supplementary
information Sec. V.). We also performed rifling of Qubit
2 while extracting information from Qubit 1 with similar
results (see Supplementary information Sec. VI.).
Other protocols to suppress measurement back-action

on qubits[29–31] have been recently realized; contrary to
quantum rifling, however, these methods require addi-
tional time-dependent pump drives beyond the Rabi drive
and thus offer a less practical implementation. Interest-
ingly, the merging of the two cavity peaks with increasing
qubit modulation is reminiscent of motional averaging of
a linewidth of a molecule[32]. In analogy, one could view
our experiment as motional narrowing of the resonator,
where the qubit acts as noisy environment shifting the
resonator’s resonance frequency. Likewise, the absence of
measurement dephasing for a fast rotating qubit bears
similarities with dynamical decoupling schemes[33], where
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noise during successive periods of free evolution interferes
destructively at specific moments in time. In contrast,
quantum rifling allows controlled decoupling of individual
qubits from their measurement apparatus for all times
during rifling. In addition, quantum rifling could be used
to render eigenstates of a system indistinguishable and
thus avoid the collapse of superposition if one wishes only
to distinguish between larger submanifolds of the system.
For example, if one tries to measure whether a qutrit is
in its ground state or not without destroying the coher-
ence between its first and second excited states, one can
achieve this by driving the transition between the two
excited states during measurement.

In conclusion, our results reveal an intuitive picture for
the regime of a strongly driven, continuously measured
qubit, where the Rabi frequency exceeds both the mea-
surement rate and the meter bandwidth. In this regime,
the resonator photons are not able to extract informa-
tion about the qubit’s state, leading to a time-averaged
population measurement of the qubit and importantly
imposing no back-action. We have also demonstrated that
a strong Rabi drive can be utilized as an experimental
knob to tune the measurement back-action between qubit
and probe, without affecting the ability to measure other
qubits probed simultaneously by the same field. This
capability allows for many qubits to be connected to an
individual detector, thus facilitating scalability in archi-
tectures where connecting individual detectors to every
qubit might be technically challenging[34].
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