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Traditional classifications of crystalline phases focus on nuclear degrees of freedom. Through
examination of both electronic and nuclear structure, we introduce the concept of an electronic
plastic crystal. Such a material is classified by crystalline nuclear structure, while localized elec-
tronic degrees of freedom — here lone pairs — exhibit orientational motion at finite temperatures.
This orientational motion is an emergent phenomenon arising from the coupling between electronic
structure and polarization fluctuations generated by collective motions, such as phonons. Using ab
initio molecular dynamics simulations, we predict the existence of electronic plastic crystal motion
in halogen crystals and halide perovskites, and suggest that such motion may be found in a broad
range of solids with lone pair electrons. Such fluctuations in the charge density should be observable,
in principle via synchrotron scattering.

Solids are phases of matter that break both transla-
tional and rotational symmetry, forming periodic atomic
and/or molecular structures. In many molecular solids,
increasing the temperature can lead to activation of ro-
tational motion, such that the orientational structure of
the activated modes becomes disordered while the trans-
lational symmetry is still broken and fixed on the peri-
odic crystalline lattice [1–4]. These phases, characterized
by long-ranged translational order and orientational dis-
order, are termed plastic crystals. Understanding the
molecular details governing these orientationally disor-
dered phases has led to profound insights into solid-state
electrolytes [5, 6], alkanes [7, 8], and fatty acid crys-
tals [9], for example.

In the classification of these phases, one focuses on the
atomic (nuclear) structure of the materials. However, one
might envision having similar correlations among elec-
trons and nuclei, especially in systems with localized,
lone pair electrons. In this work, we generalize the con-
cept of a plastic crystal to electronic degrees of freedom
and predict that solids can exhibit rotational lone pair
dynamics as the temperature is increased while the nu-
clear degrees of freedom remain in the crystalline lattice
structure. We detail this electronic plastic crystal motion
in a model molecular crystal, Cl2, and halide perovskites
of the form ABX3. This transition to an electronic plastic
crystal phase may be significant to understanding reac-
tivity, surface and phase behavior, photochemistry, and
transport in materials.

To characterize the electronic plastic crystal motion,
we perform ab initio molecular dynamics (AIMD) simu-
lations using CP2K and the QUICKSTEP module [10,
11]. Simulations for Cl2 systems followed our previous
work [12], and used a 3 × 3 × 2 supercell. For the per-
ovskite simulations, we employ the molecularly optimized
(MOLOPT) Godecker-Teter-Hutter (GTH) double-ζ va-
lence single polarization short-ranged (DZVP-MOLOPT-
SR-GTH) basis set [11] and the GTH-PADE pseudopo-

tential [13] to represent the core electrons. All pervoskite
simulations here employed a 3× 3× 3 supercell. The va-
lence electrons were treated explicitly, using the PBE [14]
functional as implemented in CP2K with a plane wave
cutoff of 400 Ry, in order to connect to earlier work on
similar systems [15]. We first equilibrated each system
to the desired temperature using a Nosé-Hoover ther-
mostat chain of length three [16, 17] with a timestep of
1.0 fs. Systems were then equilibrated in the microcanon-
ical (NVE) ensemble, before gathering statistics in the
NVE ensemble over at least 4 ps of production simula-
tion time. The coordinates of the maximally localized
Wannier function centers (MLWFCs) were obtained us-
ing CP2K, minimizing the MLWF spreads according to
the formulation of Ref. 18.

We first focus on solid Cl2 as a model molecular solid
that exhibits rotational lone electron pair dynamics. Di-
atomic chlorine forms a single covalent Cl-Cl bond and
the remaining six electrons of each Cl form three sp3 hy-
bridized lone pairs, as illustrated by the MLWFCs [19]
in Figure 1a. In addition, the Cl2 molecule has elec-
tron deficient, σ-hole regions located along the bond axis
at the end of each Cl, as well as between each lone
pair [12, 20, 21]. The unique orthorhombic crystal struc-
tures of the halogens Cl2, Br2, and I2 are stabilized by
halogen bonds, directional electrostatic attractions be-
tween (negative) lone electron pairs and these (positive)
σ-holes [12, 21, 22].

Despite the presence of halogen bonds, we find that, at
high enough temperatures, the lone electron pairs of Cl2
rotate about the Cl-Cl bond axis. This rotational motion
can be observed in Figure 1a, where we show three snap-
shots of the lone pair MLWFCs along a simulation trajec-
tory. The combined electronic/nuclear structure of Cl2
is reminiscent of the nuclear structure of ethane (C2H6),
which exhibits rotational motion of hydrogen atoms in its
plastic crystal phase that resemble that of the Cl2 lone
pairs shown here [23, 24].
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FIG. 1. (a) Snapshots illustrating a lone pair rotation of 120◦ in solid Cl2 at T = 100 K. Cl atoms are colored green and the
maximally localized Wannier function centers (MLWFCs) of the Cl lone electron pairs are shown as pale blue spheres. The
Cl2 molecule undergoing the rotation is colored red. Orange lines indicate halogen bonds. (b) Free energy as a function of
the W-Cl-Cl-W dihedral angle, where W indicates the center of a maximally localized Wannier function. (c) Time correlation
function for halogen bonds in liquid and solid Cl2. Results for the solid are shown for the same temperatures as in panel (b).
(d) Intermediate scattering function, Fk(t), determined according to Eq. 2, normalized by its value at t = 0. The value of
k = 2.886 Å−1 corresponds approximately to typical distances between lone pairs on opposite ends of the Cl2 molecule.

To further the analogy to ethane, we can character-
ize the Cl2 electronic plastic crystal motion by defining
a lone pair-Cl-Cl-lone pair (W-Cl-Cl-W) dihedral angle,
φ, and examining its statistics. The effective free en-
ergy landscape governing lone pair rotations, ∆F (φ), is
then given by ∆F (φ) = −kBT lnP (φ), where kBT is the
product of Boltzmann’s constant and the temperature
and P (φ) is the probability distribution of the dihedral
angle φ observed in the simulation. This free energy is
shown in Figure 1b for three temperatures, one below
the electronic plastic crystal transition (25 K), one above
the transition and below melting (100 K), and a super-
heated state (300 K). The three-fold symmetry of ∆F (φ)
arises from the symmetry of the Cl2 lone pairs. At low
temperatures, thermal fluctuations (in the form of acti-
vated phonon modes) are not large enough to activate
orientational motion of the lone pairs, and the free en-
ergy can only be computed near the minima; barriers are
not traversed under unbiased sampling. At 100 K and
300 K, electronic plastic crystal motion is observed in the
solid, lone pairs readily rotate between ground states, and
the free energy barrier with a temperature-independent
height of ∆F ‡ ≈ 6 kJ/mol is sampled. This lone pair ro-
tational motion does not arise from a phase transition in

the nuclear structure, but we hypothesize that it is tied
to thermal activation of phonon modes that induce local
polarization fluctuations.

The rotational motion of lone pairs breaks halogen
bonds in order to cross the free energy barrier, and then
reforms halogen bonds upon completing a rotation and
returning to a free energy minimum. The lone pair rota-
tional motion will therefore show up in time-dependent
quantifications of halogen bond dynamics. We character-
ize the dynamics of halogen bonds through the time cor-
relation function (TCF) C(t) = 〈h(t)h(0)〉 / 〈h〉, where
h(t) = 1 if a halogen bond between two Cl atoms is in-
tact at time t, and h(t) = 0 otherwise [12, 25, 26]. In
previous work, we developed a first principles, geometric
definition of halogen bonds involving nuclei-nuclei and
nuclei-MLWFC correlations [12], and we use this defi-
nition here when quantifying the influence of lone pair
rotations on halogen bond dynamics via C(t).

The halogen bond TCF is shown in Figure 1c for the
same three states discussed above. We observe a sig-
nificant change in the form of C(t) as the rotational
motion of lone pairs is activated; C(t) plateaus at a
much lower value and the initial decay is much faster
at high T . This faster decay of C(t) is consistent with
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the increased rotational motion of lone pairs in solid Cl2,
which transiently break halogen bonds between neigh-
boring molecules. The disruption of halogen bonding in-
creases with temperature and may play an important role
in melting, for example, wherein the transient weakening
of intermolecular interactions by lone pair rotations could
make it easier to nucleate a liquid phase than would be
the case if lone pair orientations were fixed. We note
that the description of halogen bonding can depend sen-
sitively on the choice of density functional, with charge
transfer playing a significant role in some cases [27, 28].
However, we expect our findings to be qualitatively in-
sensitive to these subtleties, with changes in the halogen
bond strength leading to shifts in the onset temperature
for lone pair dynamics being the dominant effect.

Experimentally, electron dynamics can be probed
through inelastic scattering [29, 30]. Within this con-
text, the key observable is the intermediate scattering
function

Fk(t) = 〈ρ̂k(t)ρ̂−k(0)〉 , (1)

where ρ̂k(t) is the Fourier transform of the electron den-
sity, ρ(r, t), at time t. Exact computation of Fk(t) would
require solving the time-dependent Schrödinger equation
to monitor the quantum dynamics of the electrons in the
system. However, we can approximate Fk(t) using the
results from our AIMD simulations, where the dynamics
are contained only in the nuclear motion, and the elec-
tron density is constrained to lie at the ground state in
each nuclear configuration. Within this level of approx-
imation, it is not necessary to work within the basis of
eigenstates of the Hamiltonian, and we can determine
the electron density in each configuration (at each time)
from the MLWFs [19]. If the shape of the MLWFs is
rigid, as is true to a good approximation for Cl2, we can
further approximate the electron density as a convolu-
tion of a time-independent shape function, f(r), and the
density of MLWFCs, ρC(r, t), such that the intermediate
scattering function is

Fk(t) ≈ f̂2k
〈
ρ̂Ck (t)ρ̂Ck (0)

〉
. (2)

Thus, for rigid MLWFs and Born-Oppenheimer AIMD,
the electron dynamics are contained in the trajectories
of the MLWFCs, drastically simplifying the estimation
of Fk(t).

The intermediate scattering function, Fk(t), is shown
for select a value of k and a range of temperatures in Fig-
ure 1d. In agreement with the behavior of C(t), the scat-
tering function decays more rapidly when lone pair rota-
tional motion is present, and exhibits almost no decay or
features beyond the initial transient below the electronic
plastic crystal transition. This suggests that inelastic
scattering-based probes of electron dynamics may be able
to uncover the existence electronic plastic phases in ma-
terials. Additionally, one might also envision probing

electronic dynamics indirectly through NMR relaxation
and chemical shift anisotropy measurements [31–33].

Dynamical motion of lone pairs is not limited to molec-
ular solids. We also find significant lone pair rotational
motion in the ABX3 halide perovskites CsSnCl3 (CSC),
CsSnBr3 (CSB), and CsCaBr3 (CCB), at 400 K. In these
systems, the nuclei-MLWFC structure of Cl/Br and Ca
are topologically analogous to methane molecules, in the
same way that the Cl2 molecule’s electronic structure was
akin to ethane. Therefore, we can expect that the rota-
tional dynamics of Cl/Br and Ca in these perovskites may
resemble those of the plastic phases of methane and other
systems containing tetrahedral molecules [4, 34–37]. The
Sn atom has a single lone pair, forming a nuclei-lone pair
dipole when the lone pair MLWFC is off-center, i.e. when
the MLWFC-Sn bond length is greater than zero. Such
off-centering occurs in the cubic phase studied here, as
evidenced in previous work [15, 38] and by the snapshot
in Fig. 2a. In contrast, Ca has a symmetric lone pair
structure in this perovskite, as indicated by the snap-
shots illustrating typical MLWFC structures in Fig. 2b.

We characterize the lone pair motion in the halide per-
ovskites through rotational TCFs. For the Sn-lone pair
dipole motion, we compute

Crot(t) = 〈P2(µ(t) · µ(0))〉 , (3)

where µ(t) is the Sn-MLWFC dipole vector at time t
and P2(x) is the second order Legendre polynomial. For
Cl/Br and Ca atoms, we compute the TCF of tetra-
hedral rotor functions, Mγ , of order l = 3, follow-
ing previous work on ionic crystals with tetrahedral
ions [37]. Here, γ labels the (2l + 1) functions for each
l. Due to the cubic symmetry of the crystal, we need
to only consider three representative functions, M1 =
3
√

3/4
∑4
i=1 xiyizi, M2 = 3

√
5/40

∑4
i=1(5x3i − 3xir

2
i ),

and M5 = 3
√

3/8
∑4
i=1 xi(y

2
i −z2i ), where ri = (xi, yi, zi)

is a unit vector along nuclei-MLWFC bond i, and ri =
|ri|. We then examine the motion of Cl/Br and Ca ML-
WFCs through the TCFs

Cγ(t) = 〈δMγ(t)δMγ(0)〉 /
〈
δM2

γ (0)
〉
, (4)

where δMγ(t) = Mγ(t) − 〈Mγ〉. We note that MLWFs
are not gauge invariant, however, the MLWFCs can only
be altered by a factor of a lattice vector upon a change of
gauge [19, 39]. Because the lattice vectors are constant
in the microcanonical (and canonical) ensemble, this is a
time-independent constant. The time-dependence of the
TCFs therefore does not depend on the chosen gauge, and
our results should be independent of the specific transfor-
mation used to obtain localized Wannier functions from
periodic Bloch functions.

The TCFs Crot(t) and Cγ(t) are shown in Fig. 2c-f and
suggest that lone pair rotational motion occurs on rapid,
sub-picosecond timescales. The rotational timescale of
the B-site ion (ABX3) is roughly the same as that of the
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FIG. 2. (a,b) Snapshots highlighting the coordination envi-
ronment around a central (a) Sn in CsSnBr3 and (b) Ca in
CsCaBr3. Cs are colored purple, Br are orange, Sn is blue,
and Ca is cyan. In both panels, maximally localized Wannier
function centers (MLWFCs) of Br, Sn, and Ca are shown as
gray spheres. (c) Rotational time correlation functions for
B-sites as defined in Eq. 3 and Eq. 4 for the Sn-lone pair ML-
WFC dipole moment in CSC/CSB and the Ca MLWFCs in
CCB, respectively. The Ca correlation functions are indicated
by their value of γ. (d,e,f) Rotational correlation functions
for X-sites (Cl or Br) defined in Eq. 4 for γ = 1, 2, 5.

X-site ions, highlighting the interplay of lone pair rota-
tional dynamics that gives rise to dynamic off-centering
of Sn observed in CsSnBr3 and similar materials [15, 40].
Moreover, the timescale for MLWFC rotational motion
is in agreement with that identified for local polar fluc-
tuations in similar perovskites [41–43]. These polar fluc-
tuations were linked to Br face expansion and Cs head-
to-head motions. Additional work has highlighted the
impact of dynamic disorder and activation of specific
phonon modes at finite temperature on local electronic
structure [43], which suggests an interplay between elec-
tronic plastic crystal motion and local polarity fluctua-
tions, but further investigations are needed to quantify
the precise relationship between these phenomena.

We find only subtle differences between the rotational
timescales of the B-site and X-site among the three per-
ovskites studied. In particular, we find that rotations in
CSC may be slightly faster than in CSB, most likely due
to the larger polarizability of Br leading to stronger X-B
ion-ion interactions.

The observed fast decay of orientational correlations
suggests the ability of these perovskites to rapidly re-
spond to the addition of a charge to the lattice, either
through a charged defect or photoexcited charge carri-
ers. In this context, one is concerned with the solid-
state solvation dynamics of the system [44–47]. Recent
work has highlighted the utility of applying concepts
from liquid-state solvation theory to polaron formation in
halide perovskites [48–51]. Within this liquid-state con-
text, solvation dynamics are characterized by the time
dependence of the interaction energy between the charge
and its environment following introduction of the solute
charge [52, 53]. Maroncelli and coworkers have shown
that in many cases, including solvation in a dipolar lat-
tice, that such a response function can be approximated
reasonably well by a power-law scaling of the dipole rota-
tional TCF, where the power is proportional to the dipole
density [54, 55]. Thus, within the accuracy of this model,
a rapid decay of Crot(t) implies fast solvation dynamics
within halide perovskites.

These findings are in agreement with the high effi-
ciency of CSB to separate photoexcited charged carri-
ers. If the dipoles are not highly correlated, nanoscale
polarization (or solid-state solvation) in response to a
charge carrier is not significantly affected by polarization
to other charge carriers. Thus, the solvation environ-
ment around one charge carrier does not ‘see’ that around
another, and the interactions between charge carriers
are efficiently screened, especially on timescales longer
than the short solvation dynamics timescale implied by
Crot(t). This efficient solvation can also be expected
from the large dielectric constant of CSB (∼ 67), while
that for CCB is much lower (∼ 17). We note, however,
that the difference in the dielectric constants of CSB and
CCB is not expected to originate from the timescale for
dipole/polarization fluctuations, because the rotational
times of Br in each crystal, as well as those of Sn and
Ca, are approximately the same, Fig. 2c-f. Instead, our
results suggest that polarization fluctuations occur on the
same timescale in CSB and CCB, however, the dipole mo-
ment that is fluctuating in CSB is of much larger magni-
tude, which gives rise to its larger dielectric constant and
ultimately the higher efficiency of CSB as a photovoltaic
material.
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