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We report on the realization of long-range Ising interactions in a cold gas of cesium atoms by
Rydberg dressing. The interactions are enhanced by coupling to Rydberg states in the vicinity of a
Förster resonance. We characterize the interactions by measuring the mean-field shift of the clock
transition via Ramsey spectroscopy, observing one-axis twisting dynamics. We furthermore emulate
a transverse-field Ising model by periodic application of a microwave field and detect dynamical
signatures of the paramagnetic-ferromagnetic phase transition. Our results highlight the power
of optical addressing for achieving local and dynamical control of interactions, enabling prospects
ranging from investigating Floquet quantum criticality to producing tunable-range spin squeezing.

Optically controlled interactions among cold atoms
are a powerful tool for fundamental studies of quan-
tum many-body dynamics [1–19] and for engineering en-
tangled states [20–27]. Tailoring interactions with light
theoretically allows for accessing non-equilibrium phases
of matter [16, 28–30], studying inhomogeneous quantum
phase transitions [31], implementing quantum optimiza-
tion algorithms [32, 33], and enhancing quantum sensors
[34–36]. Demonstrated approaches to optical control in-
clude coupling atoms to Rydberg states [1–9, 20–24], op-
tical resonators [10–12, 25, 26], or molecular bound states
[13, 14, 37–41]. Among these approaches, Rydberg ex-
citation is notable for producing strong interactions on
the few-micron scale—a typical interatomic spacing in a
laser-cooled gas or optical tweezer array [4–6].

An alternative to direct excitation is Rydberg dress-
ing, i.e., inducing interactions among ground-state atoms
by coupling to Rydberg states with an off-resonant laser
field [17–19, 27]. Rydberg dressing offers the benefit of
dynamical control over the strength and form of inter-
actions, as well as a long coherence time once the light
is switched off. Maximizing the coherence of the inter-
actions themselves has been the focus of several recent
experiments [42–45]. While dressing in dense 3D lattices
has suffered from runaway loss and dephasing [44–46],
Rydberg dressing has been successfully applied for elec-
trometry in a bulk gas [47], entangling atoms in optical
tweezers [24], and studying coherent many-body spin dy-
namics in one- and two-dimensional atom arrays [2, 3].

The simplest form of interaction realizable by Rydberg
dressing is an Ising interaction, where the Ising spins
are encoded in two hyperfine ground states. Applica-
tions in quantum simulation [16], quantum optimization
[32, 33], and quantum state engineering [36] additionally
require a transverse field, which allows quantum corre-
lations to spread. The transverse-field Ising model can
undergo a phase transition from paramagnetic to ferro-
magnetic, which has been studied in mean-field dynamics
of Bose-Einstein condensates [48] and in trapped-ion spin
chains [49, 50]. The dynamics of spin correlations in this
model have been investigated by direct Rydberg excita-
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FIG. 1. Experimental setup and Rydberg dressing
scheme. (a) A cloud of cesium atoms is held in an optical
dipole trap and locally illuminated with 319 nm light to gen-
erate Ising interactions of characteristic range rc and strength
J0. The quantization axis is set by a 1 G magnetic field B.
(b) Energy level diagrams for a single atom (left) and for a
pair of atoms (right). (c) Alternating between interactions
(HZZ) and microwave rotations (HX) produces an effective
transverse-field Ising model.

tion [8, 9]. Time-dependent variants of the model further-
more yield a rich diagram of Floquet phases, including
time crystals [28, 51] and predicted Floquet symmetry-
protected topological phases [16, 28, 29].

In this Letter, we report on the realization of a
transverse-field Ising model in a dilute gas of Rydberg-
dressed cesium atoms. For spins encoded in the hyper-
fine clock states, we generate interactions extending over
a range of several microns by coupling to Rydberg states
near a Förster resonance. At the mean-field level, the
Ising interactions manifest as one-axis twisting dynam-
ics [52, 53], which we observe by Ramsey spectroscopy
[2, 54]. We add an effective transverse field by pulsed ap-
plication of a microwave drive. At a critical interaction-
to-drive ratio, we observe a bifurcation in the mean-field
dynamics which is associated with a ground-state phase
transition from paramagnetic to ferromagnetic. By opti-
cally imprinting a spatially varying interaction strength,
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we directly observe this bifurcation as a function of po-
sition in the atomic cloud.

The principle of our experiments is illustrated in Fig. 1.
To generate Ising interactions for spins encoded in two
hyperfine ground states |↓〉 =

∣∣6S1/2, F = 3,mF = 0
〉

and |↑〉 =
∣∣6S1/2, F = 4,mF = 0

〉
, we couple state |↑〉

to the Rydberg manifold |R〉 =
∣∣43P3/2

〉
with a 319 nm

laser field of Rabi frequency Ω and detuning ∆ from the∣∣43P3/2,mJ = 3/2
〉

state. For large detuning ∆ > Ω, the
dominant effect of the dressing light on a single atom in
state |↑〉 is an ac Stark shift given by Ω2/(4∆). How-
ever, for two atoms separated by a distance r, the ac
Stark shift is modified by Rydberg interactions VR(r),
which suppress a virtual process in which both atoms
are simultaneously excited [Fig. 1(b)]. The result is an
effective interaction J(r) between atoms in state |↑〉.

The ground-state dynamics are then described by an
interaction Hamiltonian

H =
∑
i>j

J(ri − rj) (szi + 1/2)
(
szj + 1/2

)
. (1)

This Hamiltonian includes the desired Ising interactions,

HZZ =
∑
i>j

J(rij)s
z
i s
z
j , (2)

and a density-dependent effective field (terms ∝ szi in Eq.
1) that can be removed by spin echo. The characteristic
strength of the interactions is given by |J0| = Ω4/|8∆3|
(where we set ~ = 1), and the sign is determined by ∆,
with ∆ > 0 producing ferromagnetic interactions (J0 <
0). The characteristic range rc is set by the condition
VR(rc, θ) = ∆ and is angle-dependent when dressing with
P states [55].

To achieve a large interaction range while remaining in
the dressing regime ∆ � Ω, it is advantageous to have
a strong Rydberg-Rydberg interaction. To this end, we
operate in the vicinity of a Förster resonance, i.e., a near
degeneracy between the energies of the

∣∣nP3/2;nP3/2

〉
and

∣∣nS1/2; (n+ 1)S1/2

〉
pair states that enhances the

interaction strength [56]. We select n = 43, which yields
a small Förster defect ∆F = 2π×42 MHz [57] and hence
strong interactions even at zero electric field. We couple
to state |R〉 with σ+-polarized light, resulting in an in-
teraction range rc . 5 µm for our typical detuning. We
apply this light to a gas of cesium atoms at a temperature
T = 23 µK and typical density ρ ∼ 1011 cm−3, confined
in an optical dipole trap with a 50 µm waist.

We observe the Rydberg-dressed interactions by Ram-
sey spectroscopy. In particular, the Ising interactions
in Eq. 1 cause each spin to precess at a rate that de-
pends on the number of surrounding atoms in state
|↑〉. For a system of spins each initialized in state
|θ〉 = sin(θ/2) |↓〉+ cos(θ/2) |↑〉, we thus expect the aver-
age precession rate to depend on the tilt θ. We measure
this effect using a spin echo sequence, shown in Fig. 2(a),

FIG. 2. Measuring Ising interactions. (a) Ramsey se-
quence with spin echo. Bloch spheres show average spin 〈S〉
at select times for two different initial states |θ〉 (blue and
red). (b) Interference fringe for |θ〉 = |3π/4〉 showing spatial
dependence of interaction-induced phase shift. Black dashed
lines show analysis region for subplots (c-d). (c) Phase shift
φ vs. initial tilt θ for different interaction times τR with fit
curves φ = Q cos θ. (d) Twisting strength Q (blue circles)
vs. time, extracted from fits in (c). The slope of the lin-
ear fit (solid blue) gives the mean-field interaction energy
χ = 2π × 15(1) kHz. Also shown are interference contrast
C (red diamonds with fit curve) and atom number N (ma-
genta squares) remaining after Rydberg dressing, normalized
to initial atom number N0.

which removes the sz-independent ac Stark shift due to
the dressing light and leaves behind only the phase shift
resulting from Ising interactions. We extract this phase
shift by fitting an interference fringe obtained by varying
the phase α of the final π/2 pulse and detecting the re-
sulting populations in states |↑〉 and |↓〉 by fluorescence
imaging.

Figure 2(b) shows a typical Ramsey fringe for deter-
mining the mean-field shift in an initial state |θ = 3π/4〉.
We illuminate only a 160 µm wide region of an elon-
gated atomic cloud with the dressing light, and thus
directly observe the spatial variation of the interaction
strength due to the approximately Gaussian beam pro-
file. The measurement is performed with a peak Rabi
frequency Ω = 2π × 1.9(3) MHz, determined from the
total ac Stark shift in Ramsey measurements at large
detuning without spin echo. We operate at a detuning
∆ = 2π × 21.0(3) MHz that empirically optimizes the
ratio of coherent interactions to loss [55]. Dressing for a
total time τR = 40 µs yields a peak interaction-induced
phase shift φ = 2.6 rad.

To more fully characterize the interactions, we per-
form Ramsey measurements with different initial states
|θ〉 and interaction times τR. We analyze the central re-
gion of the cloud, shown by the dashed lines in Fig. 2(b).
The final phase φ of the average Bloch vector |θ, φ〉 =
sin(θ/2) |↓〉 + eiφ cos(θ/2) |↑〉 is shown in Fig. 2(c) with
different shades representing dressing times ranging from
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5 µs to 40 µs. We observe characteristic one-axis twisting
dynamics, where the φ = 0 meridian of the Bloch sphere,
on which all states are initially prepared, becomes twisted
about the z-axis due to the 〈sz〉-dependent spin preces-
sion rate.

Fitting the twisting by φ = Q cos(θ) yields a lin-
ear dependence of twisting strength Q on interaction
time τR. The slope χ ≡ |dQ/dτR| indicates the mean-
field interaction strength. The measured mean-field shift
is approximately 3.5 times larger than the prediction
χth = (ρ/2)

∫
J(r)d3r based on the calculated interac-

tion potential and density ρ = 1.4 × 1011 cm−3 [55].
We attribute this to weak incoherent excitation of the∣∣43P3/2

〉
state, which can effectively increase the inter-

action strength, albeit in a dissipative manner. This
dissipative effect dominates for τR > 1/γL, where γL
is the laser linewidth, and may be slightly exacerbated
by blackbody decay to other Rydberg states [55]. It can
be largely echoed away in a sequence of short Rydberg
pulses with more frequent π pulses, which we present fur-
ther below. There, the measured interaction strength is
consistent with the dressed potentials and atomic density.

The dynamics we observe are similar to those of the
one-axis twisting Hamiltonian H = −χS2

z/N , where

S =
∑N
i=1 si represents the collective spin of N = 2S

atoms. This description would be exact if the interac-
tions had infinite range, a case well-studied as a mecha-
nism for spin squeezing [52]. For finite-range Ising inter-
actions, we reach a particular twisting rate via stronger
pairwise interactions among fewer atoms than would be
required if each atom interacted with all others. One
expected consequence is a shortening of the collective
Bloch vector, corresponding to a reduction in contrast
C = |〈S〉| /S [53, 58]. In Fig. 2(d), we attribute the con-
trast decay to a combination of finite interaction range
and inhomogenous broadening associated with incoher-
ent Rydberg excitation. The contrast maintained places
a lower bound Nc & 14 on the number of atoms within
a typical interaction sphere [55], which corroborates the
applicability of the mean-field model.

To realize the full transverse-field Ising model, we ad-
ditionally apply a microwave coupling between the two
ground states |↑〉 and |↓〉. Since we require a spin echo
sequence to obtain Ising interactions HZZ with no ad-
ditional ac Stark shifts, it is convenient to emulate the
transverse-field Ising model by rapidly alternating be-
tween applying interactions HZZ for a time τR and the
transverse field HX =

∑
i hs

x
i for a time τX . One appli-

cation each of HZZ and HX defines our Floquet cycle.
When both the interaction and the rotation per Floquet
cycle are small — i.e., when χτR � 1 and hτX � 1 —
the effective Hamiltonian becomes equivalent to a static
transverse-field Ising model:

Heff ∝ τRHZZ + τXHX . (3)

For ferromagnetic interactions, the Hamiltonian Heff
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FIG. 3. Transverse-field Ising dynamics. (a) Trajec-
tories S(k) for initial states |θ, φ〉 (square data points) and
up to k = 4 Floquet cycles, obtained with dressing pa-
rameters (Ω,∆) = 2π × (2.8, 25) MHz. Plots (i-iv) are for
Λeff = 0, 1.2(2), 1.8(3), 2.7(4). Blue flow lines show mean-
field theory for best fit Λ = 0, 1.1, 1.5, 2.2. (b) Sequence of
microwave (purple) and Rydberg dressing (blue) pulses for k
Floquet cycles. The first application of HZZ is split into two,
with the second Rydberg pulse after the last microwave rota-
tion, to keep the fixed points along the φ = 0 meridian. (c)
Twisting strength Q vs. k measured with (τR, τX) = (10, 0)
µs in the four regions of the atomic cloud (i-iv) used in part
(a).

theoretically undergoes a phase transition as a function
of the ratio Λ ≡ χτR/(hτX) of interaction strength to
transverse field. When the transverse field dominates
(Λ� 1), the ground state is paramagnetic, with all spins
aligned along the x-axis. In the limit where Ising in-
teractions dominate (Λ � 1), there are two degenerate
ground states with all spins aligned along ±ẑ. Even with-
out directly preparing these ground states, we can look
for signatures of the paramagnetic-ferromagnetic phase
transition in the mean-field dynamics.

We probe the dynamics of the transverse-field Ising
model by varying the number of Floquet cycles to mea-
sure trajectories on the Bloch sphere for different initial
states [Fig. 3(a)]. After initializing in a state |θ, φ〉, we
alternately apply Ising interactions and microwave ro-
tations for (τR, τX) = (10, 1) µs. After applying up to
k = 4 Floquet cycles as shown in Fig. 3(b), we either di-
rectly measure Sz by state-sensitive imaging or measure
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(Sx, Sy) by first applying a π/2 microwave pulse of vari-
able phase. We then plot the trajectory of the normalized
Bloch vector S/(CS). Due to the spatial variation of the
interaction strength χ, a single such data set allows us
to observe the dependence of the trajectory on χ at fixed
rotation angle hτX = 0.12(1). Figs. 3(a.i-iv) show tra-
jectories at four representative interaction strengths.

We compare the observed trajectories with a mean-
field model, in which the system is described by a classical
Hamiltonian HMF ∝ −ΛS2

z/N − Sx. The ground states
of HMF are fixed points of the collective spin dynamics,
and can readily be calculated for a given interaction-to-
drive ratio Λ. For Λ < 1, there is only a single fixed
point at S = Sx̂ (the paramagnetic ground state). Above
a critical ratio Λ = 1, this fixed point bifurcates into
two stable fixed points (ferromagnetic ground states) at
positions

S/S = (1/Λ, 0,±
√

1− 1/Λ2), (4)

while one unstable fixed point remains on the x-axis.
Flow lines derived from this mean-field model are shown
in Fig. 3(a) (blue curves).

The mean-field model qualitatively explains the dy-
namics we observe. Whereas the Bloch vectors precess
about x̂ for weak interactions, above a critical interaction
strength they instead begin to precess about two new
fixed points in the xz-plane. For a quantitative com-
parison, we must account for effects of dissipation and
interaction-induced dephasing. First, we observe a de-
crease in interaction strength χ for later Floquet cycles
[Fig. 3(c)], which we attribute to loss and decay of Ryd-
berg atoms. The given values of χ are the averages over
the four Floquet cycles. Second, we observe a reduction
in contrast C, whose effect on the fixed-point positions
is described by replacing Λ in Eq. 4 by Λeff ≡ CΛ [55].
Independently measured values of Λeff are within 20% of
values obtained by fitting the mean-field model to the
trajectories.

The spatially varying interaction strength allows us to
directly observe the bifurcation of the fixed points as a
function of position in the atomic cloud. In Fig. 4(a),
we observe the spatial dependence of the phase φ after
four Floquet cycles for different initial states |θ〉. Fixed
points are revealed by the white contour level, where φ =
0. Outside of the dressing beam (e.g., at position A), a
single fixed point is visible at θ = π/2, corresponding to
the paramagnetic ground state. At a critical interaction
strength, the stable fixed point bifurcates and all three
fixed points become visible. We interpret this bifurcation
as a signature of the paramagnetic-ferromagnetic phase
transition, which theoretically occurs at CχτR = hτX .

To compare the position of the critical point with the-
ory, we calibrate the spatial dependence of the interaction
strength by an analogous measurement with no trans-
verse field [Fig. 4(b)]. We plot and fit the spatial depen-
dence of CχτR in Fig. 4(c), accounting for the spatially

FIG. 4. Bifurcation of fixed points, signifying paramag-
netic and ferromagnetic ground states. We measure the phase
φ after k = 4 Floquet cycles with (a) hτX = 0.14(1) or (b)
hτX = 0, as a function of initial tilt θ and position. The
φ = 0 contour reveals fixed points of the mean-field dynam-
ics, matching the theoretical prediction (purple dot-dashed,
purple dashed, and gray dotted curves for the ferromagnetic
ground states, paramagnetic ground state, and unstable fixed
points, respectively). Fitting the phase evolution in (b) yields
the average mean-field interaction χτR per cycle. (c) Green
points and fit curve show CχτR vs. position, compared with
rotation angle hτx (brown line). (d) Final phase φ vs. initial
tilt θ for cuts labeled A (yellow diamonds), B (red circles), C
(blue squares), and D (green triangles), in order of increasing
|Λ|. Solid lines show Floquet mean-field model for the mea-
sured values χτR and hτX with no contrast loss, while edge
of shaded region accounts for contrast C.

varying contrast C & 0.7. Comparing with the value
hτX = 0.14(1) yields a prediction for the positions of the
fixed points shown by the purple curve in Fig. 4(a). In
Fig. 4(d), we furthermore compare the full dependence
of final phase φ on initial tilt θ with a mean-field model
of the Floquet sequence. This model is shown by the
solid curves, which incorporate the independently mea-
sured values χτR and hτX and include only a small phase
offset as a free parameter. The full phase evolution, in-
cluding the fixed-point positions, is well described by the
mean-field model.

The dynamical timescales accessible in our current
experiments are limited by atom loss and by motion
into and out of the dressing region. These effects can
be reduced in future experiments by reducing the laser
linewidth and trapping the atoms in a lattice or tweezer
array [3]. Future work may also explore the use of elec-
tric fields, molecular bound states [15, 59], microwave
dressing [60] and/or adiabatic protocols [61] to achieve
interaction-to-decay ratios approaching the ratio Ω/Γ &
103 of Rabi frequency to Rydberg state linewidth [55].

Our work opens prospects in quantum simulation ben-
efiting from spatiotemporal control of interactions, in-
cluding exploring quantum criticality in both driven [29]
and spatially inhomogeneous [31] systems. Whereas here
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we have emulated a static transverse-field Ising model,
varying the strength of interaction and/or rotation per
Floquet cycle will allow for accessing quantum phases
with no equilibrium analog [28, 62], including Floquet
symmetry-protected topological phases [16, 28]. Com-
bining Floquet driving with a spatially varying interac-
tion strength may allow for realizing quantum systems
with emergent spacetime curvature [63, 64]. The Ising
interactions demonstrated here can furthermore be ap-
plied to generate entangled states for enhanced clocks or
sensors [34, 53], with dynamical control of interactions
and the transverse field enabling enhanced spin squeez-
ing [36]. Spatial addressing will additionally allow for
preparing arrays of entangled states for optimal atomic
clocks [65, 66].
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