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We study fluctuations of interfaces in the Kardar-Parisi-Zhang (KPZ) universality class with
curved initial conditions. By simulations of a cluster growth model and experiments of liquid-crystal
turbulence, we determine the universal scaling functions that describe the height distribution and
the spatial correlation of the interfaces growing outward from a ring. The scaling functions, con-
trolled by a single dimensionless time parameter, show crossover from the statistical properties of the
flat interfaces to those of the circular interfaces. Moreover, employing the KPZ variational formula
to describe the case of the ring initial condition, we find that the formula, which we numerically
evaluate, reproduces the numerical and experimental results precisely without adjustable parame-
ters. This demonstrates that precise numerical evaluation of the variational formula is possible at
all, and underlines the practical importance of the formula, which is able to predict the one-point
distribution of KPZ interfaces for general initial conditions.

Efforts on universal behavior associated with scale in-6

variance, which have established important concepts such7

as the renormalization group and the universality class,8

now shed light on novel aspects of nonequilibrium fluctu-9

ations. In this respect, the Kardar-Parisi-Zhang (KPZ)10

universality class [1–4] plays a distinguished role, because11

of the existence of exact solutions and experimental real-12

izations. The KPZ class is also known to arise in a vari-13

ety of problems: besides growing interfaces and directed14

polymers as originally proposed [1], it also turned out15

to be relevant for stochastic particle transport, quantum16

integrable systems [3, 4], and fluctuating hydrodynamics17

[5], to name but a few.18

In the following, let us focus on the one-dimensional19

case, for which exact studies have been developed,20

and consider growing interfaces described by the height21

h(x, t) at position x ∈ R and time t ∈ R. The KPZ22

class describes scale-invariant fluctuations of growing in-23

terfaces in the long-time limit, in general situations with-24

out particular symmetries and conservation laws. The25

hallmark of the KPZ class is the scaling laws for the26

fluctuation amplitude ∼ tβ and the correlation length27

∼ t1/z, with universal exponents β and z that take the28

values β = 1/3 and z = 3/2 for the one-dimensional case29

[1, 2, 4]. The height h(x, t) is then generally written, for30

large t, as31

h(x, t) ' v∞t+ (Γt)
1/3

χ(X, t) (1)

where χ(X, t) is a stochastic variable, X := x/ξ(t) de-32

notes the coordinate rescaled by the correlation length33

ξ(t) := 2
A (Γt)

2/3
, and v∞,Γ, A are system-dependent pa-34

rameters. The variable χ(X, t) is expected to be univer-35

sal, in the sense that its statistical properties do not de-36

pend on microscopic details of the systems. The scaling37

exponents of the KPZ class have been found in various38

experimental systems [6], including colonies of living cells39

[7, 8], combusting paper [9], and liquid-crystal turbulence40

[4, 10–12].41

Recently, remarkable developments triggered by exact42

studies [3, 4] have unveiled novel aspects on the KPZ43

class. A particularly important outcome is the geome-44

try dependence, which we describe below. If an inter-45

face grows on top of a flat substrate, as usually assumed46

in simulations, the interface roughens but maintains the47

globally flat profile. In contrast, if an interface in a plane48

starts to grow from a point nucleus, say, at x = 0, it takes49

a circular shape with a growing radius. Although this in-50

terface becomes flatter and flatter as the radius increases,51

statistical properties of χ(X, t) remain distinct from the52

flat case. Specifically, χ(X, t) has different asymptotic53

behavior as follows54

χ(X, t)
d→

{
A1(X), (flat)

A2(X)−X2, (circular)
(2)

where
d→ denotes convergence in distribution (

d
= and

d'55

will be used analogously). A1(X) and A2(X) are called56

the Airy1 [13, 14] and Airy2 [15] processes, respectively,57

and well studied analytically [16]. Due to their trans-58

lational invariance, as long as one-point properties are59

concerned, Ai(X) can be replaced by a single stochas-60

tic variable χi. Remarkably, the one-point distribution61

of χ1 and χ2 was shown [17–20] to coincide respectively62

with the GOE and GUE Tracy-Widom distribution [21],63

known from random matrix theory [22], which describes64

the distribution of the largest eigenvalue of random ma-65

trices in the Gaussian orthogonal and unitary ensembles66

(GOE and GUE). This geometry dependence, as well as67

the emergence of the Tracy-Widom distribution, turned68

out to be experimentally relevant too, as shown by ex-69

periments on liquid-crystal turbulence [4, 10, 11]. Corre-70

lation properties were also shown to be different between71

the flat and circular cases, even though the scaling ex-72

ponents β and z take the same values. On the basis73

of those results, one may state that the flat and circu-74

lar interfaces constitute different universality subclasses75
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within the single KPZ class, characterized by different76

yet universal distribution and correlation properties.77

Those universality subclasses have been, however,78

mostly studied for a few “canonical” cases including the79

flat and circular ones. A natural and important question80

is then what happens for more general initial conditions.81

Theoretically, the KPZ fixed-point variational formula82

[16, 23–26] can be used to predict the asymptotic proper-83

ties of χ(X, t→∞) for general initial conditions. On the84

other hand, experimental and numerical studies have fo-85

cused on finite-time behavior emerging from intermediate86

initial conditions. For example, the present authors [12]87

studied growth from a ring of finite radius R0, which then88

produces two curved interfaces, one growing outward and89

the other one inward. Focusing on the ingrowing inter-90

faces, we found that finite-time properties of χ(X, t) for91

different R0 are controlled solely by the rescaled time92

τ := v∞t/R0, as follows: statistical properties of χ(X, t)93

agree with those for the flat subclass initially (τ � 1),94

until the interfaces nearly collapse at τ ≈ 1 and therefore95

do not behave as KPZ anymore. Analogous behavior was96

also observed numerically by Carrasco and Oliveira [27],97

who used lattice models with system size set to decrease98

in time (mimicking the shrinking circumference of the99

ingrowing interfaces). The case of enlarging substrates,100

which would correspond to the outgrowing case, has also101

been studied and crossover from the flat to circular sub-102

classes was suggested in this case [27–29], which is also103

expected to be described by τ . However, it remains un-104

clear how universal such finite-time behavior is, why τ105

is the right parameter to describe it, and above all, how106

such crossover can be described theoretically.107

Those problems are addressed and answered in this108

Letter. We study outgrowing interfaces from ring initial109

conditions both numerically and experimentally, using an110

off-lattice version of the Eden model [30] and the liquid-111

crystal turbulence [4, 10–12]. Scaling functions for the112

flat-to-circular crossover are determined, and shown to113

be the same for both of the studied systems. Moreover,114

we describe this crossover theoretically, by adapting the115

variational formula [16, 23–26] for curved initial condi-116

tions. The formula is numerically evaluated and shown to117

reproduce our numerical and experimental results quan-118

titatively, without adjustable parameters. This also im-119

plies that the flat-to-circular crossover is indeed universal120

and, furthermore, should generally appear for any curved121

interfaces with locally parabolic initial conditions.122

We first study the off-lattice Eden model [30], in which123

a cluster of round particles (with unit diameter) grows124

by stochastic addition of new particles. The initial con-125

dition is set to be a ring of N particles [Fig. 1(a)].126

The evolution rule is as follows (see Ref. [30] for de-127

tails): at each time step, we randomly choose a par-128

ticle at the interface, attempt to put a new particle129

next to it in a random direction and do so if there130

is no overlapping particle. Time is then increased by131

FIG. 1. Typical snapshots from the Eden simulations and
the liquid-crystal experiments. (a) An Eden interface growing
outward from a ring with N = 1000 (dotted line). Time is
indicated by the color. (b) A DSM2 cluster (black) growing
from a ring with R0 = 366 µm (dotted lines). The elapsed
time after shooting laser is indicated above each image. The
scale bar corresponds to 1 mm.

1/(the number of the interfacial particles) whether the132

new particle was put or not. Particles that cannot con-133

tribute further growth were checked and removed from134

the list of the interfacial particles every time unit. To135

characterize the height fluctuations, we measure the lo-136

cal radius increment R(θ, t), which is the radial distance137

between the initial ring and the interface at each angular138

position θ [Fig. 1(a)]. Thanks to the rotational symme-139

try, we have140

R(θ, t)
d
= h(0, t) ' v∞t+ (Γt)1/3χ(0, t), (3)

but statistical precision can be improved by averaging141

over θ. In our simulations, we varied the initial size N142

from 100 to 40000 and obtained 4320 to 14400 realiza-143

tions for each case (summarized in Table SI [31]). For144

comparison, we also simulated flat interfaces, for which145

the initial condition was a line formed by 75000 parti-146

cles and the periodic boundary condition in the spanwise147

direction was used, and obtained 14400 realizations.148

To characterize statistical properties of the stochas-149

tic variable χ(X, t), we first estimated the non-universal150

parameters v∞,Γ and A, from the data for the flat inter-151

faces. v∞ and Γ were obtained by the standard procedure152

[4], specifically by using ∂t 〈h〉 ' v∞+ const.× t−2/3 and153 〈
h2
〉
c
/
(
t2/3

〈
χ2
1

〉
c

)
' Γ2/3, where

〈
· · ·k

〉
c

denotes the154

kth-order cumulant and here we used the fact that the155

asymptotic fluctuations of the flat interfaces are given156

by the GOE Tracy-Widom distribution. We obtained157

v∞ = 0.51370(5) and Γ = 0.980(3). The parameter A158

was obtained by A =
√

2Γ/v∞, the relationship valid for159

isotropic growth [11].160

With those parameter values, we define the rescaled161

height162

q(θ, t) :=
R(θ, t)− v∞t

(Γt)
1/3

d' χ(0, t) (4)

and measure its mean and variance as functions of time,163

for different initial particle number N (Fig. 2 left). Fig-164
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ure 2 also shows the rescaled mean velocity [4, 12]165

〈p(θ, t)〉 :=

〈
3t2/3

Γ1/3
[∂tR(θ, t)− v∞]

〉
' 〈χ(0, t)〉+ 3t∂t 〈χ(0, t)〉 , (5)

which asymptotically goes to 〈χ(0, t)〉 if 〈χ(0, t)〉 con-166

verges sufficiently fast. For the flat case (gray circles),167

〈q〉 → 〈χ1〉, 〈p〉 → 〈χ1〉 and
〈
q2
〉
c
→
〈
χ2
1

〉
c

as expected.168

In the case of the ring initial conditions, for large N the169

data first behave similarly to the flat case, then devi-170

ate and approach the values for the circular subclass,171

〈χ2〉 and
〈
χ2
2

〉
c

[32]. This crossover takes place ear-172

lier for smaller N . Indeed, when the data are plotted173

against the rescaled time τ = v∞t/R0 (R0 = N/2π),174

all data collapse onto a single curve except for the non-175

universal short-time regime (Fig. 2 right). This suggests176

that the distribution of χ(0, t) for different R0, denoted177

by χ(0, t;R0), is described by a single stochastic variable178

χc(0, τ), parametrized by τ , as follows:179

χ(0, t;R0)
d→ χc(0, τ), (R0, t→∞) (6)

where the double limit is taken with fixed τ = v∞t/R0.180

Then the flat-to-circular crossover we found indicates181

χc(0, τ)
d→ χ1 for τ → 0 and χc(0, τ)

d→ χ2 for182

τ → ∞. The skewness Sk[R(θ, t)] :=
〈
R3
〉
c
/
〈
R2
〉3/2
c

183

→ Sk[χc(0, τ)] and the kurtosis Ku[R(θ, t)] :=184 〈
R4
〉
c
/
〈
R2
〉2
c
→ Ku[χc(0, τ)] show consistent behavior185

(Fig. S1 [31]).186

We also study this crossover in the spatial correla-187

tion. In the case of the point initial condition, sup-188

pose θ = 0 corresponds to x = 0, then using R(θ, t) =189 √
h(x, t)2 + x2 ' h + x2

2h and Eq. (2), we can show190

q(θ, t)
d→ A2(X). Therefore, the rescaled spatial covari-191

ance Cs(∆X, t) := 〈q(θ + ∆θ, t)q(θ, t)〉 − 〈q(θ, t)〉2 with192

∆X := 〈R(θ, t)〉∆θ/ξ(t) can be directly compared with193

the covariance of the Airy1 and Airy2 processes. Our194

numerical results for the ring initial conditions (Fig. S2195

filled symbols) indeed show crossover from the Airy1 co-196

variance (τ � 1) to the Airy2 covariance (τ � 1), con-197

sistently to the results on the one-point distribution.198

To test universality of our finding, in particular the199

function forms of 〈χc(0, τ)〉 and
〈
χc(0, τ)2

〉
c
, we con-200

ducted experiments on liquid-crystal turbulence [4, 10–201

12]. As in the previous studies, we applied an AC voltage202

(here, 22 V at 300 Hz) to nematic liquid crystal filling a203

thin gap between transparent electrodes, and observed204

growth of a turbulent state called the dynamic scatter-205

ing mode 2 (DSM2), expanding in a metastable turbu-206

lent state, DSM1 (see Supplemental Text [31] for detailed207

methods). DSM2 was generated by emitting a few ultra-208

violet laser pulses [4]. Using the holographic technique209

we previously adopted for the DSM2 growth experiments210

[12], we formed the laser intensity profile in the shape of211

FIG. 2. The mean and variance of the rescaled height,
〈q(θ, t)〉 and

〈
q(θ, t)2

〉
c
, and the rescaled mean velocity

〈p(θ, t)〉 for the Eden model in the outgrowing case. The
data are shown against the raw time t (left) and the rescaled
time τ = v∞t/R0 (right). The theoretical curves evaluated
numerically from the variational formula for the outgrowing
interfaces (=var., blue solid line) are shown in the right pan-
els. The values of χ1 and χ2 are shown by the dashed and
dotted lines, respectively. The inset of the right-top figure
shows the difference between the data and the excepted long-
time limit value, 〈χ2〉. The black solid line indicates slope
−1/3.

a ring of a given radius R0, which sets the initial condi-212

tion of the DSM2 interface [Fig. 1(b)]. We also generated213

circular interfaces with a point initial condition, and flat214

interfaces with a linear initial condition. We obtained215

941 to 1936 realizations for each case (Table SII [31]),216

recorded by a charge-coupled device camera. The radius217

R(θ, t) of the DSM2 interfaces (or the height h(x, t) for218

the flat case) was determined from each image, with the219

time t defined as the elapsed time after shooting the laser220

pulses. Then the non-universal parameters v∞,Γ, A were221

evaluated in the same way as for the Eden model, here222

for the flat and point initial conditions (Table SII [31]).223

Although the values of v∞,Γ, A are expected to be inde-224

pendent of the initial condition, in practice one needs to225

evaluate for each set of experiments, because of unavoid-226

able slight changes in experimental conditions [11]. For227

the ring initial conditions, however, the parameter values228

could not be obtained in the same way because of the229

time dependence (i.e., crossover) of χ(X, t). We there-230

fore used the values obtained from the flat case for the231

outgrowing cases, unless otherwise stipulated. Possible232

shifts in the parameter values were taken into account233

in the uncertainty estimates for the outgrowing cases,234

evaluated from the differences in the parameter values235

between the flat and circular cases.236
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FIG. 3. Comparison of the results from the experiments
(color filled symbols), the Eden simulations (gray open sym-
bols), and the variational formula (=var., blue solid line), for
the outgrowing interfaces. The variance of the rescaled height,〈
q(θ, t)2

〉
c
, and the rescaled mean velocity 〈p(θ, t)〉 are shown

in the left and right panels, respectively, against τ = v∞t/R0.
For the numerical results, data with t > 103 are shown by the
same symbols as those in Fig. 2. For the experimental results,
statistical errors are indicated by the error bars on the first
and last data points, and uncertainty associated with the pa-
rameter estimation is shown by the shaded areas. The values
for χ1 (flat) and χ2 (circular) are shown by the dashed and
dotted lines, respectively. The inset of the right panel shows
the experimental results obtained with v∞ from the flat case,
while it was adjusted in the main panel to fit the Eden data
at the largest t (see text).

Now we compare the experimental results with those237

for the Eden model. Figure 3 left panel shows the238

variance of the rescaled height,
〈
q(θ, t)2

〉
c
, against τ =239

v∞t/R0, which overlaps on the Eden data within statis-240

tical errors and parameter uncertainty (error bars and241

shades, respectively) apart from the non-universal short-242

time behavior. For the rescaled mean velocity 〈p(θ, t)〉243

(right panel), the uncertainty of v∞ was too large to make244

a meaningful comparison (inset). However, if we instead245

choose the value of v∞ in such a way that 〈p(θ, t)〉 at the246

largest t falls onto the curve for the Eden model (obtained247

values of v∞ are given in Table SII), 〈p(θ, t)〉 overlaps248

for all t (main panel). Those results of
〈
q(θ, t)2

〉
c

and249

〈p(θ, t)〉 suggest universality of the one-point distribution250

of χc(0, τ). Moreover, the spatial covariance Cs(∆X, t) is251

also found to overlap with the results of the Eden model252

if the value of τ is close enough (Fig. S2). This suggests253

that not only the one-point distribution of χc(0, τ) but254

the spatial covariance of χc(X, τ) is also universal.255

So far we have characterized the flat-to-circular256

crossover and found it to be controlled by a single param-257

eter τ = v∞t/R0, but why so and how can this crossover258

be theoretically described? To answer these questions,259

we employ the variational formula [16, 23–26] and apply260

it to a general, curved initial condition.261

The variational formula describes the height h(x, t) for262

a general initial condition h(x, 0) =: h0(x) as follows263

h(x, t)
d' sup
y∈R

[hcirc(x, t; y) + h0(y)] , (7)

where hcirc(x, t; y) denotes the height for the point ini-264

tial condition nucleating at position y, growing with the265

same realization of noise for different y [23]. Intuitively,266

this means that the initial condition h(x, 0) can be re-267

garded as a collection of point sources and h(x, t) is then268

given by the envelope of the circular interfaces from those269

point sources, a bit analogously to Huygens’ principle270

[33]. The formula (7) involves a mathematical object271

called the Airy sheet [23, 25], but if the interest is only272

in the one-point distribution, it can be simply expressed273

by the Airy2 process, as follows [16, 24]:274

χ(X, t)
d' sup
Y ∈R

[
A2(X − Y )− (X − Y )2 +

h0(ξ(t)Y )

(Γt)1/3

]
.

(8)
We use Eq. (8) and consider a class of curved initial275

conditions in the following form276

h0(x) = R0g

(
x

R0

)
(9)

where g(w) is a locally parabolic function, i.e., g(w) =277

−c2w2 + O
(
w2
)

for small |w|. Substituting Eq. (9)278

into Eq. (8), taking the limit R0, t → ∞ with fixed279

τ = v∞t/R0, and setting x = 0 yields280

χ(0, t)
d→ sup
Y ∈R

[
A2 (Y )− (1 + cτ)Y 2

]
=: χ̃ (cτ) (10)

with c := (4c2Γ)/(A2v∞). This shows that the asymp-281

totic height distribution is parameterized only by cτ , and282

only the local functional form of g (w) at small |w| is rel-283

evant. The characteristic time is τ = 1/c and therefore284

t = A2R0/4c2Γ, and this is the time at which the ini-285

tial height difference |h0(0)− h0(ξ (t))| becomes compa-286

rable to the fluctuation amplitude, (Γt)
1/3

. For isotropic287

growth, the relationship A =
√

2Γ/v∞ [11] further yields288

c = 2c2.289

For the ring initial conditions, g(w) is given by g(w) =290

σ
(√

1− w21|w|<1 − 1
)

with σ = +1 (−1) for the out-291

growing (ingrowing) case. Then we obtain χ(0, t)
d'292

χ̃ (στ), which we have expressed by χc(0, τ) for the out-293

growing case σ = +1 [Eq. (6)]. Note that, mathemati-294

cally, it is known that χ̃(0) = supY ∈R(A2 (Y )−Y 2)
d
= χ1,295

i.e., GOE Tracy-Widom distribution [34, 35]. In the296

other limit τ → ∞, clearly, χ̃(τ) → A2 (0)
d
= χ2, i.e.,297

GUE Tracy-Widom distribution. Therefore, χc(0, τ) =298

χ̃(τ) indeed has the expected limits on both sides of the299

flat-to-circular crossover.300

To compare the variational formula with the exper-301

imental and numerical data for finite τ , we employ a302

Monte Carlo method to evaluate Eq. (10). The Airy2303

process A2(Y ) is in fact known to be equivalent to the304

largest eigenvalue of large GUE random matrices under-305

going Dyson’s Brownian motion [16, 34]. We therefore306

implement Dyson’s Brownian motion numerically, in the307

form of the Ornstein-Uhlenbeck process of Hermitian ran-308

dom matrices and obtained approximated realizations of309
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A2(Y ) (see Supplemental Text [31] for details). Then we310

evaluated the supremum of Eq. (10), interpolating the311

values of A2(Y ) between the discrete steps by using the312

Brownian bridge [31]. The results for the outgrowing313

case (σ = +1) are shown in Figs. 2 and 3, where the data314

of the mean 〈q〉, variance
〈
q2
〉
c
, and the rescaled mean315

velocity 〈p〉 are compared with the corresponding ex-316

pressions of χ̃(τ), specifically, 〈χ̃(τ)〉,
〈
χ̃(τ)2

〉
c

[Eq. (4)],317

and 〈χ̃(τ)〉+ 3τ∂τ 〈χ̃(τ)〉 [Eq. (5)], respectively. The re-318

sults of the variational formula precisely agree, without319

any adjustable parameter, with the numerical and ex-320

perimental data. We also inspected the ingrowing case321

σ = −1 and confirmed the validity of the variational for-322

mula (Fig. S3). The agreement was also underpinned for323

the skewness and kurtosis (Fig. S4).324

In summary, we found KPZ crossover functions that325

govern height fluctuations of interfaces growing outward326

from ring initial conditions, parameterized only by the327

rescaled time τ = v∞t/R0, and evidenced their univer-328

sality both experimentally and numerically. We then pre-329

sented a theoretical description of this crossover, on the330

basis of the KPZ variational formula for general curved331

initial conditions. We numerically evaluated the formula332

and found remarkable agreement with the experimental333

and numerical data. Our results constitute the first ex-334

ample where the KPZ variational formula was success-335

fully used to describe experimental observations, show-336

ing the ability of this formula to explain, or even predict,337

real data from general initial conditions. We hope our338

work will trigger further studies to elucidate geometry-339

dependent universality of the KPZ class and beyond.340
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