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Disorder is more the rule than the exception in natural and synthetic materials. Nonetheless,
wave propagation within inhomogeneously disordered materials has received scant attention. We
combine microwave experiments and theory to find the spatial variation of generic wave propagation
quantities in inhomogeneously disordered materials. We demonstrate that wave statistics within
samples of any dimension are independent of the detailed structure of a material and depend only
on the net strengths of distributed scattering and reflection between the observation point and each
of the boundaries.

Coherent waves launched into a random sample are
scrambled in a haze of scattered fields that is manifested
in the speckle pattern of scattered light. This makes dis-
ordered materials opaque and impairs communication,
imaging, and transport. Studies of transport in ran-
dom systems have focused on disordered materials with
uniform scattering strength throughout the medium and
possible surface reflection [1–8]. For example, Brownian
motion of particles in a homogeneous liquid was shown
by Einstein to be due to randomly fluctuating forces on
microparticles by molecules in thermal equilibrium [9],
while in Chandrahekar’s radiative transfer model, the
rate of particle scattering out of or into a particular di-
rection is homogeneous [10]. In quantum scattering, the
suppression of electron diffusion was first studied in the
Anderson tight-binding model, in which the distributions
of electron energy at each lattice site are the same [11].
Localization of radiowaves was first found in calculations
for random waveguides with a spatially homogeneous dis-
tribution of disorder in the dielectric constant [12]. Such
studies have led to a deep understanding of ballistic and
diffusive propagation and of Anderson localization. How-
ever, the paradigm of homogeneously disordered materi-
als does not represent key elements of our surroundings,
which are generally inhomogeneously disordered with a
spatially varying scattering strength and multiple inter-
faces within the bulk of the material and at the surface.
Understanding wave propagation in such materials would
enable a wide range of applications in diverse fields, in-
cluding medical imaging [13], lidar and remote sensing
[14], astrophysics [10], telecommunication [15], electron-
ics [16, 17], phononics [18–20], invisibility cloaking [21],
and photothermal therapy [22].

In this letter, we go beyond canonical homogeneously
disordered materials. We begin by considering a simple
departure from the traditional uniformly disordered ma-
terial – the insertion of a single reflector into a uniformly
disordered sample. We discover an invariance principle
for such materials: Wave statistics at any the point of

observation is invariant with regard to displacement of
a reflector along the length of the sample, apart from a
discontinuity that arises when the reflector crosses that
point. This leads to the discovery of an even broader
invariance principle. By that principle we obtain a full
description of wave propagation and statistics for gen-
eral inhomogeneously disordered materials with multiple
embedded reflectors or tunneling barriers and a longitu-
dinally varying transport mean free path `(x).

We carry out microwave measurements in a uniformly
disordered one-dimensional (1D) open medium of length
L with a reflector at depth x0. We consider the inten-
sity at a point x, I(x;x0), which is normalized so that
its value at the output is equal to the flux transmis-
sion coefficient, for an ensemble of disorder configura-
tions. The results of measurements of the ensemble av-
erages 〈ln I(x;x0)〉, 〈I(x;x0)〉 and the probability density
function P (ln I(x;x0)) are explained using random ma-
trix theory (RMT) [5, 27, 28] and supersymmetry field
theory (SUSY) [29, 30]. We consider P (ln I) rather than
P (I) since ln I self-averages and so a comparison to the-
ory can be made with measurements on fewer disorder
configurations. RMT and SUSY address wave propaga-
tion from different perspectives and together provide a
universal description for it.

We find that the average and the probability density
function of all local quantities that can be expressed in
terms of the Green function of the wave equation share
a common feature with regard to their variation with x0:
When x is fixed, but x0 is changed, a quantity O(x;x0)
representative of waves in a disordered ensemble is un-
changed as long as x remains in front of or behind the
reflector, and changes discontinuously from O(x;0) to
O(x;L) when x0 crosses x. This behavior is encapsulated
in the following identity proved below:

O(x;x0) = θ(x0 − x)O(x;L) + θ(x− x0)O(x; 0), (1)

where θ is the Heaviside function. This allows us to find
the spatial structure of the statistics of intensity and of
the intensity in transmission eigenchannels [31–35]. The
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FIG. 1. Measurements of and theoretical results for O(x;x0)=〈ln I(x;x0)〉 (a), 〈I(x;x0)〉 (b) and P (ln I(0.5L;x0)) (c) in 1D
samples with a reflector at different x0 or without a reflector are in good agreement. They all exhibit the invariance and
discontinuity with regard to displacement of the reflector, and are identical to O(x;L(0)) for x<x0 (x>x0).

impact of distributed scattering and discrete reflection
on the profile of 〈ln I〉 is additive, while the profile of
〈I〉 is determined by the position-dependent diffusion co-
efficient D(x;x0), which is a function of the strength of
distributed scattering, discrete reflection, and the rela-
tive positions of x and x0. D(x;x0) not only satisfies
Eq. (1), but also obeys a scaling law,

D(x;x0)/D0 = D∞(λ(x;x0)), (2)

once it is rescaled by the Boltzmann diffusion coefficient
D0. Here x and all parameters describing the inhomo-
geneity enter into the scaling factor λ(x;x0), and the
scaling functionD∞(λ) describes propagation in both ho-
mogeneously and inhomogeneously disordered materials.
These findings go beyond traditional studies that address
the interplay between surface reflection and particle scat-
tering, which ignore wave interference [3, 10, 23–26]. The
results are surprising since the field at x results from the
coherent superposition of waves arriving at x which is
inevitably affected by the specific location of a reflector,
x0, being in front of or behind x. Finally, the principle
applies not only in 1D, but also in quasi-1D and higher
dimension.

Measurements are carried out with the use of a vec-
tor network analyzer in a single-mode rectangular cop-
per waveguide containing ceramic slabs of thickness 6.6
mm and Teflon U-channel air spacers with thickness ran-
domly chosen from three values: 1.27, 2.55 and 3.82
cm. The sample of length L=86.0 cm is contained in
a copper waveguide with a cutoff frequency of 6.56 GHz.
Successive sample elements are selected randomly with
a probability of 1/2 for the ceramic slabs and 1/6 for
each thickness of the U-channel elements. Spectra are
taken for ensembles of 100 random configurations with-
out a reflector and with a reflector at relative depths of
x0/L=0,1/4,3/4,1. The reflector is a thin copper plate
covering 76% of the waveguide cross section with trans-
mission coefficient Γ=0.36 in the empty waveguide.

The wave is detected by an antenna inserted sequen-
tially into a series of holes of diameter 3.17 mm spaced by

1 cm along the waveguide. Field spectra are taken over
the frequency interval 10.00-10.70 GHz over which the
waveguide supports a single mode. The incident inten-
sity I0 is found by fitting the expression for the intensity
of counter-propagating waves: I0[1+r2+2rcos(2kx+ϕ)]
in a 4-cm-long segment before the random sample to de-
termine the incident field. Here r is the magnitude of
the reflected field, k is the wavenumber determined from
waveguide dispersion, and ϕ is the phase. We undo the
impact of absorption using the method described in the
Supplementary Materials (SM) [36]. Measurements of in-
tensity at each position are normalized by measurements
in the empty waveguide with absorbers at the ends of
the waveguide so that the sensitivity is uniform at all
positions.

Measured profiles of 〈ln I(x;x0)〉 for samples without
a reflector and with a reflector at x0=L/4 or 3L/4, in
which the impact of absorption is removed are plotted in
Fig. 1a. 〈ln I〉 decreases linearly in front of the reflector
and overlaps the profile measured in samples without a
reflector, but drops sharply behind the reflector and then
continues to fall with the same slope as before the reflec-
tor. The profiles in samples with a reflector at x0=L/4
and 3L/4 are identical, in the region in front of (x<L/4)
and behind (x>3L/4) the reflectors, demonstrating that
the size of the drop is independent of x0. Away from x0,
the slope of 〈ln I〉 in all regions is the same as the slope
in a sample without a reflector. When x is rescaled by
L, this gives a slope of magnitude s=L/`=3.51 [28] cor-
responding to a mean free path `=24.5 cm. Below and
in the SM, we use RMT to show

〈ln I(x;x0)〉 =

{
−x/` for x < x0

−x/`+ ln Γ for x > x0
. (3)

The discontinuity at x0 is equal to the logarithm of the
transmission coefficient Γ of the reflector. This analytic
result is plotted in Fig. 1a, and seen to be in excellent
agreement with measurements. Equation (3) is a special
case of the general result of Eq. (1). For x<x0 (x>x0),
〈ln I(x;x0)〉 is the same as when the reflector is at the
output (input).
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Measured profiles of 〈I(x;x0)〉 for samples without a
reflector and with a reflector at x0=L/4 or 3L/4 are plot-
ted in Fig. 1b. The profiles for the reflector at x0=L/4
and 3L/4 still overlap for x<L/4 and x>3L/4, as is the
case for 〈ln I〉. Though 〈ln I(x;x0)〉 in front of the re-
flectors (x<L/4) is not affected by the presence of the
reflector, 〈I(x;x0)〉 increases significantly for x<L/4 rel-
ative to the profile for samples without a reflector. Using
SUSY we show that as an another application of Eq. (1),

〈I(x;x0)〉 = θ(x0 − x)〈I(x;L)〉+ θ(x− x0)〈I(x; 0)〉, (4)

where

〈I(x; 0(L))〉 = 〈I(0; 0(L))〉 − (〈I(0; 0)〉+ 〈I(0;L)〉 − 2)

×
erf
(√

sL
L+ζ

2x−(L∓ζ)
2L

)
− erf

(
−
√

sL
L+ζ

L∓ζ
2L

)
erf
(√

sL
L+ζ

L±ζ
2L

)
− erf

(
−
√

sL
L+ζ

L∓ζ
2L

) . (5)

Here ζ is a length determined by Γ and
〈I(0;0)〉≡〈I(0+;0)〉. From Eq. (5), we find
〈I(x;0)〉+〈I(L−x;L)〉=2. This is in accordance with
the sum of intensity at a point due to all incident
channels being equal to the local density of states with
its average unaffected by the presence of a reflector.
Good agreement of Eqs. (4) and (5) with measurements
is found for s=3.51, ζ=0.33L [36], 〈I(0;0)〉=1.61 and
〈I(0;L)〉=1.92, with the last two parameters calculated
using Eq. (10) below. For samples without a reflector, ζ
vanishes. In this case, we find with the use of Eq. (10)
that 〈I(0;0)〉=〈I(0;L)〉 =1.86. Substituting this into
Eq. (5) gives 〈I(x;0)〉=〈I(x;L)〉 with a profile in good
agreement with measurements.

Measurements of P (ln I(L/2;x0)) at x0/L=0,1/4, 3/4,
1 are shown in Fig. 1c and compared to RMT calculations
for P (ln I(L/2;0(L))). We see that the measurements of
P (ln I) for x0/L=0,1/4 coincide with the theoretical re-
sult of P (ln I(L/2;0)), while, for x0/L=1,3/4, they match
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FIG. 2. (a) Simulation and analytic results for 1D samples
with a reflector at different x0 show that the profiles D(x;x0)
overlap D(x;L(0)) for x<x0 (x>x0) and display a disconti-
nuity at x0. (b) Upon mapping x to λ(x;x0), simulated pro-
files of D(x;x0)/D0 (symbols) for samples with different x0
or without a reflector collapse to a single curve: D∞(λ)=e−λ

(solid line).

the theoretical result for P (ln I(L/2;L)). This is in accor-
dance with Eq. (1), which predicts that P (ln I(L/2;x0))
is invariant with regard to the displacement of the re-
flector as long as θ(x−x0) does not change, but changes
suddenly when x0 crosses L/2.

To study universal aspects of 〈I〉, we show below that

−∂xD(x;x0)∂x〈I〉 = 0 (6)

in the interior of the medium. This differs from the nor-
mal diffusion equation in the position dependence of the
diffusion coefficient, which is the result of the spatial vari-
ation of localization effects in open media [29, 30, 37–39].

D(x;x0)

D0
=e−λ(x;x0), λ(x;x0)=

{
(x+ζ)(L−x)
`(L+ζ) , x > x0

x(L+ζ−x)
`(L+ζ) , x < x0

,(7)

where λ is essentially the probability density of return
obtained from the diffusion equation with diffusion coef-
ficient D0. Because λ for x>x0 (x<x0) is the same as
when x0=0 (L), it obeys Eq. (1), and so does D.

Intensity fluctuations are too large to allow for an ac-
curate experimental determination of D(x;x0) with data
from 100 configurations. Thus we perform simulations
using the experimental values for `, L and Γ, and com-
pute D(x;x0) from −〈T 〉/∂x〈I〉, which is the generalized
Fick’s law. Here 〈T 〉 is the ensemble-averaged transmis-
sion coefficient, which is equal to the flux. Simulation
results for x0=L/4 and 3L/4 are shown in Fig. 2a and
are in good agreement with the analytic result of Eq. (7).
We next use the expression for λ given above to map x to
λ(x;x0). For samples without a reflector, we set ζ=0 so
that λ=x(L−x)/(`L). The simulated profile D(x;x0)/D0

for samples with different x0 or for samples without a re-
flector collapse to a single curve: D∞(λ)=e−λ, as shown
in Fig. 2b. This scaling law was found previously for
uniformly disordered materials [30].

We sketch the analytic derivations. The full theory is
provided in a self-contained manner in the SM. We first
consider quasi-1D but locally two-dimensional (2D) ran-
dom media and then extrapolate the final results from
quasi-1D to 1D. The dielectric constant ε(r) exhibits in-
dependent Gaussian fluctuations around unity at every
point r≡(x,y). The reflector is modeled by a layer of high
dielectric constant. The propagation of a wave of angu-
lar frequency ω is described by the retarded (advanced)
Green function GR(A)≡(∇2+ω2ε(r)±i0+)−1. Using the
SUSY technique [40], GR(A) can be expressed in terms
of a path integral over a supervector field. Since a lo-
cal quantity such as I(x;x0) can be expressed in terms
of GR(A), upon performing the disorder average, one can
express O(x;x0) in terms of a functional integral over
a supermatrix field Q(x) [29, 30]. Upon rescaling x by
4ξ where ξ=πνD0 with ν the density of states per unit
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FIG. 3. Simulations for three ensembles, two consisting of 1D samples composed of two segments of different scattering strength
(red dashed and green dash-dotted curves) and one of uniformly disordered samples (blue solid curve). In all samples, ηL=6.
Upon mapping x to η(x), the profiles of 〈ln I〉 (a, inset), 〈I〉 (b, inset), and P (ln I) (c) in different ensembles collapse to a single
curve (main panel).

length, we find

O(x;x0) =

∫
DQ(x)MO[Q(x)] (8)

×
{

W (QL, Q(x); L̃− x)W̃ (Q(x),Λ;x, x0), x > x0

W̃ (QL, Q(x); L̃− x, x0 − x)W (Q(x),Λ;x), x < x0

with L̃=L/(4ξ). Different observables O differ only in
the functional MO[Q(x)] and in the boundary constraint
Q(L)=QL [Q(0) is a constant matrix Λ.]. Here W is the
heat kernel and

W̃ (Q,Q′;x1, x2) ≡
∫
DQ−DQ+e

γstr(Q−Q+)

×W (Q,Q+;x1 − x2)W (Q−, Q
′;x2), forx1 > x2. (9)

Here−γstr(Q−Q+) is the action accounting for wave tun-
neling through the reflector, with γ depending on ω, Γ
and the cross sectional area, and str represents the su-
pertrace. Using Eq. (8), we find that both ∂x0

O(x;x0<x)
and ∂x0

O(x;x0>x) vanish [36]. This justifies Eq. (1).
Applying Eq. (8) to the spatial correlator:

Y(x,x′)≡〈
∫∫
dydy′GA(r,r′)GR(r′,r)〉, we find that it

is the fundamental solution of the generalized diffusion
equation, −∂xD(x;x0)∂xY=δ(x−x′), from which Eq. (6)
follows. We also find D∞(λ)=1−λ+O(λ3) for λ�1
corresponding to weakly localized waves, with λ given by

Eq. (7) and ζ=ξ/(4γ)`dΓ((d+1)/2)
Γ(d/2)

2−Γ
Γ . This perturbative

expansion of D∞ is exactly the same for samples without
a reflector [30], and the presence of a reflector at x0

only enters into λ. The scaling behavior described by
Eq. (2) is expected to hold for all λ. Thus we can apply
the results for localized samples without a reflector
[30] to the present case. This gives D∞≈e−λ for λ>∼1
and D(x;x0)=D0e

−λ(x;x0) in 1D. Solving Eq. (6) gives
Eq. (5).

P (ln I(x;x0)) =

∫∫ 2π

0

dθldθr
(2π)2

∫∫ 2π

0

dµldµr
(2π)2

∫∫ ∞
0

dλldλr

×psl(λl)psr (λr)δ (ln I(x;x0)− ln I(x, {λ, θ, µ})) . (10)

Here I(x,{λ,θ,µ}) is the expression for intensity in the
polar representation [5]. The parameters θl(r), µl(r)
are uniformly distributed over [0, 2π], and λl(r) is dis-
tributed according to psl(sr)(λl(r)) [41, 42] with sl=x/`
[sr=(L−x)/`]. The explicit forms of I(x,{λ,θ,µ}) and
psl(sr) are given in the SM. From Eq. (10), one may ob-
tain the statistics of any function of intensity. It gives
the values 〈I(0;0(L))〉 in Eq. (5) and P (lnI) at x=L/2
plotted in Fig. 1c and the analytic expression of Eq. (3).

In general, inhomogeneity arise from multiple segments
with different scattering strength or a smoothly varying
mean free path, and multiple embedded reflectors. In
this case, we map x to η=η(x)=

∫ x
0

dx′

`(x′) [ηL=η(L)]. A

generic average quantity assumes the form, O(η;{ηi}),
where {ηi} are the coordinates of interfaces or reflectors.
Using SUSY, we find

∀j : ∂ηjO(η; {ηi}) = 0, if and only if ηj 6= η. (11)

Thus O is invariant with regard to arbitrary shuffling of
interfaces or reflectors, as long as they do not cross η.
This generalizes Eq. (1). Indeed, Eq. (1) has an equiv-
alent form, namely, ∂x0

O(x;x0)=0 if and only if x0 6=x,
which is a special case of Eq. (11).

For inhomogeneity arising solely from variations in
scattering strength, Eq. (11) implies that the η de-
pendence of O is identical to that in a uniformly
disordered sample. For 〈lnI〉, we find using RMT
that 〈lnI〉=−η. For 〈I〉, we find using SUSY that

−∂ηD(η)∂η〈I〉=e.lta(η−η′) with D(η)=e
− η(ηL−η)ηL , which

gives

〈I(η)〉 = 〈I(0)〉 − 2 (〈I(0)〉 − 1)

×
erf
(

2η−ηL
2
√
ηL

)
− erf

(
−
√
ηL
2

)
erf
(√

ηL
2

)
− erf

(
−
√
ηL
2

) . (12)

In Fig. 3, we compare numerical results for intensity
statistics in samples with ηL = 6 but different variations
of `(x). The spatial profiles of 〈ln I(η)〉 and 〈I(η)〉 and
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FIG. 4. (a) Simulations of the eigenchannel profile Wτ for
two ensembles of 2D diffusive samples. In one ensemble, the
sample is composed of two segments of different scattering
strength (green dash-dotted curve) while in the other the scat-
tering strength is uniform (blue solid curve). In all samples,
ηL=5. (b) Upon mapping x to η(x), the profiles of Wτ in the
two ensembles collapse to a single curve.

the probability distributions of ln I of any value of η are
the same in different samples.

The invariance principle for high-dimensional diffusive
samples, in which nonuniformity in scattering arises ei-
ther from an embedded reflector or a spatially varying
mean free path, is demonstrated theoretically in the SM.
In Fig. 4, we compare numerical results for the average
longitudinal profile of energy within the sample, denoted
Wτ (x), normalized so that Wτ (x = L) = τ [32, 34], in
two ensembles consisting of 1000 samples with channel
number N = 80, aspect ratio 2, ηL = 5, and the scal-
ing conductance g = N/ηL = 16. The mean free path is
uniform in one ensemble of samples but varies with x in
the other. The profiles in two different ensembles overlap
upon mapping x to η(x).

The invariance principle allows us to shift the fo-
cus from the surface to the interior of the sample and
from homogeneous to inhomogeneous disorder. We have
demonstrated its application to intensity statistics in a
general dimension and to controlling the spatial struc-
ture of transmission eigenchannels. Our findings open a
door to engineering the profiles of wave energy and its
flow inside inhomogeneously disordered materials.
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