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We propose a versatile framework to dynamically generate Floquet higher-order topological insu-
lators by multi-step driving of topologically trivial Hamiltonians. Two analytically solvable examples
are used to illustrate this procedure to yield Floquet quadrupole and octupole insulators with zero-
and/or π-corner modes protected by mirror symmetries. Furthermore, we introduce dynamical
topological invariants from the full unitary return map and show its phase bands contain Weyl
singularities whose topological charges form dynamical multipole moments in the Brillouin zone.
Combining them with the topological index of Floquet Hamiltonian gives a pair of Z2 invariant ν0
and νπ which fully characterize the higher-order topology and predict the appearance of zero- and
π-corner modes. Our work establishes a systematic route to construct and characterize Floquet
higher-order topological phases.

Introduction. Topological phases of matter [1, 2] are
characterized by bulk topological invariants and the ap-
pearance of robust edge/surface states. Recently, the no-
tion of topological phases and bulk-edge correspondence
has been extended to higher-order topological insulators
(HOTIs) [3, 4]. A defining characteristic of HOTI is the
emergence of corner or hinge modes, i.e. excitations at
the intersections of edges or surfaces with energies inside
the bulk gap and protected by crystalline symmetries [3–
18]. Theoretical concepts such as the nested Wilson loops
[3, 4] and many-body multipole operators [19, 20] have
been proposed to capture their topological properties and
the bulk-corner/hinge correspondence. Experimentally
HOTIs have been observed in phononic [21] and photonic
systems [22–24], circuit arrays [25] and crystal solids [26].

The notion of topological phases has also been gen-
eralized to Floquet systems where the Hamiltonian is
periodic in time, H(t + T ) = H(t), with T the driv-
ing period [27–31]. Periodic driving provides a powerful
tool to engineer the quasienergy band structure by tun-
ing the driving amplitude, frequency and shape. Despite
the apparent similarity between quasienergy and energy,
the topological properties of Floquet systems are much
richer than static systems. One of its unique features is
the appearance of in-gap modes pinned at quasienergy
ε = 0, π/T and localized at the edge, even though the
bulk quasienergy bands are trivial. Such anomalous Flo-
quet topological insulators are intrinsically dynamical
phases. In order to systematically classify Floquet topo-
logical phases [32–34], one must examine the full time-
evolution operator U(t). In particular, the so-called re-
turn map Ũ(t) [see Eq. (1) below] defines a Z or Z2

topological invariant [33, 34] for each quasienergy gap.
In 2D, for example, it corresponds to the winding num-
ber [31, 35, 36] which counts the topological charge of

Weyl-like singularities [37, 38] in the instantaneous phase
band during time evolution. The return map, together
with the effective Hamiltonian HF , can describe a large
class of first-order Floquet topological insulators [32–34].

It is then natural to ask whether periodic driving can
give rise to new high-order topological phenomena that
have no static analogues, and if so, how to character-
ize them? Recently, several specific models have ap-
peared to realize Floquet HOTIs (FHOTIs) in periodi-
cally driven systems [39–43]. These proposals however
rely on building-block Hamiltonians with specific lattice
structures or symmetries and are therefore not general.
Moreover, the existing topological invariants in Refs.
[39–43] are supplied in a case by case manner, applica-
ble only to a certain specific model or symmetry class.
A theory for FHOTIs that can predict the corner modes
(CMs) from bulk invariants constructed from a general
Ũ(t) and HF is still lacking.

Motivated by these considerations, in this paper we
demonstrate a generic route to realize and characterize
FHOTIs. The construction does not rely on any specific
space-time symmetries of the building-block Hamiltoni-
ans. As an example, a 2D model is solved analytically
to determine the phase diagram, which contains two Flo-
quet quadrupole topological phases with 0- and π-CMs
respectively. Via the decomposition of the unitary evolu-
tion, we show that the topology of the quasienergy bands
is captured by Z2 invariant νF0 from the nested Wil-
son loops, while the return maps feature multipole pat-
terns of dynamical singularities: the topological charges
of the Weyl-type singularities of Ũ(t) form a quadrupole
moment in the Brillouin zone (BZ) at certain instants.
Two dynamical invariants n0, nπ are introduced to count
these charges. From νF0 and n0,π, we show that each
quasienergy gap is characterized by a Z2 index ν that pre-
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FIG. 1. Construction of FHOTI on a square lattice from
multi-step driving. (a) The trivial building blocks h0 (left),
hx (middle), and hy (right) with intra-cell hopping t0 and
inter-cell hopping tx, ty. Dashed lines represent hoppings with
negative signs. (b) Schematic of particle motion in one period
of two-step driving, hy followed by hx with t0 = 0. The
corners are dynamically decoupled from the bulk, giving rise
to four localized corner modes (big solid circles).

dicts the appearance or absence of CMs. The new Z2 in-
variants work for all mirror-symmetry protected FHOTIs
and go beyond the periodic table of first-order Floquet
topological insulators. The construction and topologi-
cal analysis are then generalized to 3D Floquet octupole
topological insulators.

Dynamical construction of FHOTI. The dynamics of
a periodically driven lattice system with Hamiltonian
H(t) is governed by the unitary evolution U(t) =

T e−i
∫ t
0
H(τ)dτ , where ~ = 1 and T denotes time-ordering.

To extract its topology, it is convenient to decompose
U(t) into a unitary loop Ũ(t) satisfying Ũ(0) = Ũ(T ) = I
and the time evolution of a constant Hamiltonian HF

[33]. Explicitly, one can define the effective Hamiltonian
HF = i logU(T )/T as well as the return map [31, 33, 34]

Ũ(t) = U(t)eiHF t. (1)

Usually, Ũ(t) is defined for a given gap with the logarithm
branch cut lying within it. It is apparent from Eq. (1)
that the topology of U(t) is carried by both HF and Ũ(t).
The spectra εn of HF are known as quasienergy bands
and we take εn ∈ [−π/T, π/T ].

The basic idea of dynamical construction of FHOTI
can be illustrated by a simple example of Floquet
quadrupole insulator depicted in Fig. 1(a). Consider a
square lattice, where each unit cell (shaded box) consists
of four lattice sites. Our strategy is to herd the motion
(more precisely the quantum walks) of particles by spa-
tial control of the tunneling amplitudes in multiple steps
within each driving period. Three trivial Hamiltonians
hx, hy and h0 serve as the building blocks: hx/y only
contains inter-cell hopping tx/y along the x/y direction,
and h0 only contains intra-cell hopping t0. To visualize
the emergence of topological CMs, consider the limit of
t0 = 0 and two-step driving: H(t < T/2) = hy followed
by H(t > T/2) = hx. The semiclassical particle motion
is sketched in Fig. 1(b). It is clear that particles in the
bulk move along a plaquette, while particles on the four
edges hop back and forth. However, particles initially at
the four corners remain localized and completely decou-

pled from the bulk and edge dynamics. They are noth-
ing but Floquet CMs. We will show below that the CMs
persist to finite t0 as the bulk excitations form Floquet
bands separated by gaps. Similar to static case [3, 4], the
Floquet CM is protected by crystalline symmetries (e.g.,
mirror reflection).

This picture motivates us to propose the following
generic N -step driving sequence. In each step s with
time interval Ts, the system evolves according to a con-
stant Hamiltonian hs assumed, for simplicity, to be a sum
of anti-commuting terms (see h0, hx,y in Eq. (4) below).
Accordingly,

U(T ) =
∏N

s=1
(cos θs − i sin θsh̃s). (2)

Here θs = Ts|Es|, h̃s = hs/|Es|, with ±Es the spec-
trum of hs. By definition, the wave functions of CMs at
quasienergy zero (0-CM) and π/T (π-CM) satisfy

U(T )|ψ0〉 = |ψ0〉, U(T )|ψπ〉 = −|ψπ〉. (3)

The existence of solution to these eigen equations is guar-
anteed by properly choosing θs and hs as follows. Con-
sider a state |η〉 localized at the corner (Fig. 1b). It may
couple to neighboring sites by hs=1 in the first step. But
for all other steps s > 1, hs is chosen so hs>1|η〉 = 0.
A 0-CM is realized if we choose θ1 = 0. Its wave func-
tion |ψ0〉 is simply given by |η〉. Similarly setting θ1 = π
gives rise to π-CM with |ψπ〉 = |η〉. For 0- and π−CMs
to coexist [39], one can choose for example θ1 = π/2 and
θs>1 = π for even N . We will give a few examples be-
low to illustrate how this construction procedure can be
applied to generate different kinds of FHOTIs.

Floquet quadrupole insulator. First we present an an-
alytically solvable model of Floquet quadrupole insula-
tor (FQI) and demonstrate the emergence of topological
CMs. The overall set up has been introduced above in
Fig. 1 on the square lattice. The 2 × 2 unit cell is con-
veniently described by two sets of Pauli matrices σ and
τ . The trivial building blocks are hopping Hamiltonians
h0 = t0(τ0σ1 + τ2σ2), hx = tx(cos kxτ0σ1 − sin kxτ3σ2),
and hy = ty(cos kyτ2σ2+sin kyτ1σ2) where k = (kx, ky) is
the quasi-momentum. The terms in h0,x,y anti-commute
and the system possesses two mirror symmetries Mx =
iτ3σ1 and My = iτ1σ1. The driving protocol is

t ∈ T1, H(t) = h0; t ∈ T2, H(t) = hy;

t ∈ T3, H(t) = hx; t ∈ T4, H(t) = h0, (4)

with time interval Ts = [(s − 1)T/4, sT/4). For txT =
tyT = π, the FQI phase with 0-CMs appears when [44]

(N − 1/6)π < φ0 < (N + 1/6)π, N ∈ Z. (5)

with φ0 ≡ t0T
2
√
2
. The FQI phase with π-CMs lies within

(N + 1/3)π < φ0 < (N + 2/3)π, N ∈ Z. (6)
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FIG. 2. (a) Phase diagram of the Floquet system with driving
Eq. (4). Top: topological invariants ν0 (black) and νπ (red)
obtained from Eq. (9) showing two FQI phases. Bottom:
the quasienergy spectra for a finite 24× 24 lattice. The four-
fold degenerate 0-/π-CMs are marked by the black/red lines,
respectively. (b) The spatial wave functions of four π-CMs,
|ψiπ|2(i = ll, lr, ul, ur), φ0/π = 0.45, tx = ty = π/T .

For all other values of φ0, the system is a trivial band
insulator with no CMs.

Fig. 2(a) shows the quasienergy spectra as function
of φ0 for a finite lattice with open boundary conditions.
In between the bulk bands, we observe four-fold degen-
erate in-gap modes pinned at ε = 0 or ε = π/T . They
appear alternatively with a period of exactly π as φ0 is
varied, and are separated from each other by the topo-
logically trivial phase, in consistent with Eqs. (5)-(6).
The wave functions of these in-gap modes are shown in
Fig. 2(b). They are indeed localized at the four corners
arising from the bulk quadrupoles. In comparison, the
quasienergy spectra for periodic boundary condition or
stripe geometry are fully gapped [44], indicating vanish-
ing conventional dipoles.

This model provides an elegant example of our dynami-
cal construction of FHOTIs and CMs summarized in Eq.
(2). Denote the wave functions of four CMs as |ψi0/π〉
(i = ll, lr, ul, ur) and take i = ll, the lower-left corner for
example. For φ0 = 0, the 0-CM wave function is localized
at a single site labeled as 1 [Fig. 1], |ψll0 〉 = |1〉ll, corre-
sponding to the value θ1 = 0 in our construction scheme.
The other two driving steps hx,y do not couple the CMs
to the bulk. For φ0 = π/2, the π-CM wave function is
|ψllπ 〉 = 1√

2
(|2〉ll − |4〉ll), corresponding to θ1 = π. When

deviating from these ideal limits, the CMs spread further
into the bulk but remain localized. The FQI and CMs
persist as long as the bulk gaps stay open.

Dynamical topological invariants. For static HOTI, the
higher-order bulk topology and appearance of CMs can
be described by introducing Wannier bands and nested
Wilson loops [3, 4, 44, 45]. The analysis can be general-
ized to Floquet systems to capture the topological prop-
erties of HF and the quasienergy bands. We chose the
lower two overlapping quasienergy bands to construct the
Wannier-band subspace |ωjx,k〉 (j = 1, 2) and compute
the nested polarizations [3, 4, 44], for example,

pjy = i

∫
BZ

d2k

(2π)2
〈ωjx,k|∂ky |ω

j
x,k〉. (7)

FIG. 3. Dynamical singularities of FQIs in (k, t)-space. The
colored dots label the Weyl charges in the phase band of
Ũ(t) at certain time instants. Their topological charges form
quadrupole moments in the BZ. The red/blue dots label
charge ±1 at the π-gap; the magenta/green dots label charge
±1 at the 0-gap. From (a) to (d), φ0/π = 0.1, 0.95, 0.45, 1.45
with tx = ty = π/T .

In the presence of mirror symmetries Mx and My, the
nested polarization pjy and pjx are quantized to be 0 (triv-
ial) or 1/2 (topological) [3, 4], yielding a Z2 classifica-
tion. The topological quadrupole phase corresponds to
(pjy, p

j
x) = (1/2, 1/2). It is characterized by Z2 invariant

νF0 = 4pjyp
j
x. (8)

For the two FQI phases above, νF0 is found to be 1, which
is consistent with the quantized tangential polarization
along the edges [3, 4, 44]. By itself, however, νF0 cannot
distinguish the two FQI phases, or predict in which gap
the CMs reside or even the existence of CMs (e.g. for
anomalous FQI [39], νF0 is zero but CMs are present).
This is not surprising because it only captures the topol-
ogy of HF , not the full U(t). For FHOTI, an intrinsically
dynamical topological invariant is needed.

Such a dynamical invariant can be defined from the
return map Ũ(t). The diagonalization of Ũ yields Ũ(t) =∑
m e
−iε̃m(k,t)|ϕm(k, t)〉〈ϕm(k, t)|, with the eigenphases

ε̃m forming the phase bands [33, 37]. For our system,
during the time evolution t ∈ (0, T ), the gap may close
at 0 or π/T as the phase bands touch each other at iso-
lated points in the (k, t)-space, similar to Weyl points
in semimetals, and reopen afterwards. Such singular
points resemble magnetic monopoles and carry topolog-
ical charges [37]. For the i-th degeneracy point dj =
(kj , tj) of band m, we compute its topological charge
Cj = 1

2πi

∮
Sj

∇ × 〈ϕm(k, t)|∇|ϕm(k, t)〉 · dS, with Sj a

small surface enclosing dj .
Due to the mirror symmetries Mx,y, these “Weyl

points” at a specific time instant always come in quar-
tets, i.e. at k = (±kx,±ky) in the 2D BZ. And their
charges form a quadrupole pattern [46] as illustrated in
Fig. 3(a)-(d). Such dynamical quadrupole (with zero to-
tal charge) indicates the higher-order topology and the
absence of 1D edge states [31, 37]. In fact, one can prove
that a quadrupole pattern is equivalent to its mirror im-
age by a continuous deformation based on Mx or My

[44]. Thus, n0,π =
∑ε̃(dj)=0,π

kj∈1st qBZ Cj , the total Weyl charge
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within the first quadrant of the BZ during t ∈ (0, T ), is
only defined modulo 2, and its parity can serve as the
dynamical invariant for corresponding gap. Combining
n0,π from Ũ(t) with the quadrupole invariant νF0 for HF ,
we arrive at two Z2-valued invariants ν0,π for the 0- and
π-gap respectively (for details, see [44]),

νπ = nπ mod 2; ν0 = (n0 + νF0 ) mod 2. (9)

We stress that the Z2 nature of ν0,π originates from mir-
ror symmetries. A nonzero value of ν0 = 1 (νπ = 1)
indicates the appearance of CMs at the 0-gap (π-gap).
Thus, our Floquet system follows a Z2×Z2 classification
and is described by two Z2 invariants (ν0, νπ), one for
each gap. To check the correspondence between bulk in-
variants Eq. (9) and the CMs observed in numerics, we
give a few examples of the Weyl charges in Figs. 3(a)-(d).
For the FQI phase with 0-CMs [Fig. 3(a)(b)], we have
n0 = 0 and nπ = 0 or 2. In both cases, (ν0, νπ) = (1, 0).
For the FQI phase with π-CMs [Fig. 3(c)(d)], n0 = 1 and
nπ = 1 or 5. Thus, (ν0, νπ) = (0, 1). It is clear that Eq.
(9) correctly predicts the appearance of Floquet CMs,
in agreement with Fig. 2(a). We have checked that
the invariants ν0,π also apply to anomalous FQIs with
ν0 = νπ = 1 discussed in [39, 44].

Floquet octupole insulator. Next we show how to gen-
erate Floquet octupole insulators (FOIs) on a cubic lat-
tice following our general scheme. The degrees of free-
dom inside the eight-site unit cell, illustrated in Fig.
4(a), can be described by three sets of Pauli matrices
τ , σ and s. The dynamical construction employs four
building blocks: an intra-unit cell hopping Hamiltonian
h0 = t0(Γ2 + Γ4 + Γ6) and three inter-unit cell hop-
ping Hamiltonians hx = tx(sin kxΓ3 + cos kxΓ6), hy =
ty(sin kyΓ1 + cos kyΓ2), hz = tz(sin kzΓ5 + cos kzΓ4) with
Γ0 = τ3σ3s0, Γi = −τ3σ2si for i = 1, 2, 3, Γ4 = τ1σ0s0,
Γ5 = τ2σ0s0 and Γ6 = i

∏5
j=0 Γj . The driving protocol

consist of two steps: for 0 < t < T/4 and 3T/4 < t < T ,
H(t) = h0; for T/4 < t < 3T/4, H(t) = hx + hy + hz.
Let us focus on the simple case of tx = ty = tz. Then the
phase boundaries can be found analytically [44],

φ0 ± φx = Nπ/2, N ∈ Z (10)

with φ0 =
√

3t0T/4 and φx =
√

3txT/4.
The phase diagram on the φ0 − φx plane is depicted

in Fig. 4(b). It contains three distinct FOIs and a
trivial phase. Roughly speaking, the FOI phase with
only 0-CMs is located near φ0 = 0 and π, while the
FOI phase with only π-CMs occupies regions around
φ0 = π/2. Sandwiched in between is the third, anoma-
lous FOI which has both 0- and π-CMs. The quasienergy
spectrum for a finite system with open boundary condi-
tions is shown in Fig. 4(c) for parameters along a cut in
the phase diagram with fixed φx = 3π/8. The location
of different Floquet CMs agrees with the phase bound-
aries given by Eq. (10). To cast this example in the
general scheme Eq. (2), we notice the 0-CM at point

(a) (b) (c)

tx
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ϕ0/π0 1/2 1
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x
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n
T

-π

π

0

0 1

FIG. 4. Floquet octupole insulator. (a) The unit cell contains
8 sites on a cubic lattice, the solid/dash lines denote hoppings
with +/− signs. (b) The phase diagram with φ0 and φx de-
fined in the main text. Color-coded regions represent three
FOI phases with 0-CMs only (blue), π-CMs only (green), both
0- and π-CMs (red), and the trivial phase (white). Each
phase is labeled by its dynamical invariants (ν0, νπ). (c)
Quasienergy spectra of a 16 × 16 × 16 lattice along the dash
line in (b) for fixed φx/π = 3/8. The black/red lines mark
the eight-fold degenerate 0/π-CMs.

φ0 = 0 is simply |ψ0〉 = |6〉 with θ1 = 0. The π-CM at
φ0 = π/2 is just |ψπ〉 = (|2〉+ |7〉 − |8〉)/

√
3 with θ1 = π.

The system has three mirror symmetries: Mx = τ0σ1s3;
My = τ0σ1s1; and Mz = τ0σ3s0. Together they quan-
tize the octupole moment. Similar to the FQIs, the topol-
ogy of the Floquet system is carried by both HF and the
return map Ũ(t). The former is characterized by a Z2

invariant νF0 [44]; the latter contains singularities of the
phase bands in 4D (k, t)-space. We find the invariants in
Eq. (9) are still valid [44].

Outlook. We have introduced a versatile route to con-
struct and characterize FHOTIs. The building blocks
are topologically trivial and accessible in many synthetic
(e.g. photonic and cold-atoms) quantum systems. For
example, the quadrupole phase can be realized based on
the π-flux Hofstadter model [47, 48] with the addition
of a superimposed superlattice along both the x and y
directions [3]. Alternatively, the modulation along one
direction may be replaced by utilizing spin degree of
freedom, with the effective hoppings being induced by
Raman coupling and laser-assisted tunneling in differ-
ent directions, respectively. The driving protocol can be
viewed more generally as discrete-time quantum walks on
lattice [49–51]. By imposing further constraints on the
building blocks or the driving protocols, our construc-
tion can be generalized to realize higher-order topological
phases in other symmetry classes. In contrast to previous
constructions of model-dependent topological invariants,
the phase-band singularities are general for Floquet sys-
tems, hinting the possibility of a unified scheme for char-
acterizing the higher-order topology for a wide class of
systems. Experimentally, in addition to the observation
of CMs, the higher-order topology may be identified from
the tomography of band-touching singularities [52]. Fi-
nally, it would be interesting to investigate FHOTIs in
the frequency domain [31, 53] and the time evolution of
CMs from the entanglement perspective [44].
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Larsen, L. G. Villanueva, and S. D. Huber, Observation
of a phononic quadrupole topological insulator, Nature
555, 342 (2018).

[22] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G.
Bahl, A quantized microwave quadrupole insulator with
topologically protected corner states, Nature 555, 346
(2018).

[23] A. Hassan, F. Kunst, A. Moritz, G. Andler, E. Bergholtz,
and M. Bourennane, Corner states of light in photonic
waveguides, Nature Photonics 13, 697 (2019).

[24] S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A.
Poddubny, M. Hafezi, Photonic quadrupole topological
phases, Nature Photonics 13, 692 (2019).

[25] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neu-
pert, Topolectrical circuit realization of topological corner
modes, Nat. Phys. 14, 925 (2018).

[26] F. Schindler et al., Higher-Order Topology in Bismuth,
Nat. Phys. 14, 918 (2018).

[27] J. Cayssol, B. Dra, F. Simon, and R. Moessner, Floquet
topological insulators, Phys. Status Solidi RRL 7, 101
(2013).

[28] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D.
Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin,
and P. Zoller, Majorana Fermions in Equilibrium and
in Driven Cold-Atom Quantum Wires, Phys. Rev. Lett.
106, 220402 (2011).

[29] N. H. Lindner, G. Refael, V. Galitski, Floquet Topological
Insulator in Semiconductor Quantum Wells, Nat. Phys.
7, 490 (2011).

[30] T. Kitagawa, E. Berg, M. Rudner, E. Demler, Topological
characterization of periodically driven quantum systems,
Phys. Rev. B 82, 235114 (2010).

[31] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin,
Anomalous Edge States and the Bulk-Edge Correspon-
dence for Periodically Driven Two-Dimensional Systems,
Phys. Rev. X 3, 031005 (2013).

[32] M. Fruchart, Complex classes of periodically driven topo-
logical lattice systems, Phys. Rev. B 93, 115429 (2016).

[33] R. Roy and F. Harper, Periodic table for Floquet topo-
logical insulators, Phys. Rev. B 96, 155118 (2017).

[34] S. Yao, Z. Yan, and Z. Wang, Topological invariants of
Floquet systems: General formulation, special properties,
and Floquet topological defects, Phys. Rev. B 96, 195303
(2017).

[35] Z. Zhou, I. I. Satija, and E. Zhao, Floquet edge states in a
harmonically driven integer quantum Hall system, Phys.
Rev. B 90, 205108 (2014).

[36] M. Lababidi, I. I. Satija, and E. Zhao, Counter-
propagating edge modes and topological phases of a kicked
quantum Hall system, Phys. Rev. Lett. 112, 026805
(2014).

[37] F. Nathan and M. S. Rudner, Topological singularities
and the general classification of Floquet-Bloch systems,

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org//10.1126/science.aah6442
https://doi.org//10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevB.97.241405
https://doi.org/10.1103/PhysRevLett.121.186801
https://doi.org/10.1103/PhysRevLett.121.186801
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevX.9.011012
https://doi.org/10.1103/PhysRevB.99.041301
https://doi.org/10.1103/PhysRevB.99.041301
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.97.205135
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1103/PhysRevB.98.205422
https://doi.org/10.1103/PhysRevLett.123.073601
https://doi.org/10.1103/PhysRevLett.123.073601
https://doi.org/10.1103/PhysRevB.100.020509
https://doi.org/10.1103/PhysRevB.100.020509
https://arxiv.org/abs/1812.06999
https://arxiv.org/abs/1812.06990
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/s41566-019-0519-y
https://doi.org/10.1038/s41566-019-0452-0
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevB.93.115429
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/PhysRevB.96.195303
https://doi.org/10.1103/PhysRevB.96.195303
https://doi.org/10.1103/PhysRevB.90.205108
https://doi.org/10.1103/PhysRevB.90.205108
https://doi.org/10.1103/PhysRevLett.112.026805
https://doi.org/10.1103/PhysRevLett.112.026805


6

New J. Phys. 17, 125014 (2015).
[38] E. Zhao, Anatomy of a periodically driven p-wave super-

conductor, Zeitschrift fur Naturforschung A, 71(10), 883
(2016).

[39] B. Huang, W. Vincent Liu, Higher-Order Floquet
Topological Insulators with Anomalous Corner States,
arXiv:1811.00555

[40] M. Rodriguez-Vega, A. Kumar, B. Seradjeh, Higher-
order Floquet topological phases with corner and bulk
bound states, Phys. Rev. B 100, 085138 (2019).

[41] R. W. Bomantara, L. Zhou, J. Pan, and J. Gong,
Coupled-wire construction of static and Floquet second-
order topological insulators, Phys. Rev. B 99, 045441
(2019).

[42] Y. Peng, G. Refael, Floquet Second-Order Topological In-
sulators from Nonsymmorphic Space-Time Symmetries,
Phys. Rev. Lett. 123, 016806 (2019).

[43] R. Seshadri, A. Dutta, D. Sen, Generating a second-order
topological insulator with multiple corner states by peri-
odic driving, Phys. Rev. B 100, 115403 (2019).

[44] See “Supplementary Materials” for details on the deriva-
tions of U(T ), Floquet spectra under different bound-
ary conditions, nest Wilson loop approach, Z2 invari-
ants, phase-band characterizations of anomalous FQIs
and FOIs, time evolution of CMs.

[45] L. Fidkowski, T. S. Jackson, and I. Klich, Model Charac-
terization of Gapless Edge Modes of Topological Insula-
tors Using Intermediate Brillouin-Zone Functions, Phys.
Rev. Lett. 107, 036601 (2011).

[46] The four “Weyl” charges may merge together by addi-
tional symmetries and form a multi-fold degenerate band
singularities at the high-symmetry point. In this case, we
can directly count n0, nπ as the times of multi-fold band
touchings in Eq. (9). A multi-fold band touching will split
into four “Weyl” charges by small perturbations preserv-
ing mirror symmetries.

[47] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes, and I. Bloch, Realization of the Hofstadter
Hamiltonian with Ultracold Atoms in Optical Lattices,
Phys. Rev. Lett. 111, 185301 (2013).

[48] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Bur-
ton, and W. Ketterle, Realizing the Harper Hamiltonian
with Laser-Assisted Tunneling in Optical Lattices, Phys.
Rev. Lett. 111, 185302 (2013).

[49] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum
random walks, Phys. Rev. A 48, 1687 (1993).

[50] M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D.
Meschede, and A, Widera, Quantum Walk in Position
Space with Single Optically Trapped Atoms, Science 325,
174 (2009).

[51] T. Kitagawa, M. S. Rudner, E. Berg, and E. Demler,
Exploring topological phases with quantum walks, Phys.
Rev. A 82, 033429 (2010).
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