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Magnetic field generated by the Biermann battery is thought to be one of the principal mechanisms
behind inhibition of heat-flow in laser-plasma interactions, and is predicted to grow exponentially in
some contexts due to the thermomagnetic instability [Tidman & Shanny, Phys. Fluids 17 (1974)].
In contrast to these predictions, however, we have conducted Vlasov-Fokker-Planck simulations of
magnetic field dynamics under a range of classically unstable laser-fusion conditions, and find field
generation to be strongly suppressed, preventing magnetization of the transport, and stabilizing
instability. By deriving new scaling laws, we show that this stabilization is a consequence of:
(i) heavy suppression of the Biermann battery under non-local conditions; (ii) rapid convection of
magnetic field by the heat-flow; and (iii) comparatively short field length-scales. Our results indicate
that classical models substantially overestimate the importance of magnetic fields generated by the
Biermann battery, and the susceptibility of laser-fusion plasmas to the thermomagnetic instability.

The generation of magnetic field during the interaction
of high power lasers with plasmas is a topic of importance
for both fundamental plasma physics, and laser-fusion re-
search, primarily because magnetic fields strongly affect
transport of thermal energy [1]. Multi-megagauss mag-
netic fields are readily generated in a variety of labora-
tory plasma experiments, including those relevant to In-
ertial Confinement Fusion (ICF) [2–5]. The main source
of magnetic field (flux density B) in these cases is the
Biermann battery (the baroclinic mechanism), which oc-
curs when gradients in the electron number density ne

and temperature Te are non-parallel, and at the rate
∂B/∂t = ∇Te × ∇ne/ene (elementary charge e) [2, 4].
Under conditions involving feedback from magnetized
thermal transport (heat-flow), the baroclinic mechanism
is believed to generate filamentary magnetic field at an
exponential rate by an effect known as the thermomag-
netic instability [6, 7]. For example, onset of the thermo-
magnetic instability has been proposed as one of the main
causes of filamentary structures in coronal plasmas, and
as an explanation behind the need for thermal flux in-
hibition when interpreting laser-plasma experiments [8–
11]. Despite these important applications, however, stud-
ies of the instability have been limited to classical lin-
ear models, unsupported by numerical simulation, mean-
ing that the relevance of the thermomagnetic mechanism
to non-local, laser-fusion conditions has remained largely
untested [6, 7, 14–17]. It has long been known, for ex-
ample, that classical transport models of laser-plasma
coronas are invalid (because the plasma is typically so
hot and rarefied that the electron mean-free-path λei is
large compared to system scale-lengths), and under these
conditions kinetic simulations become essential [12, 25].

In this letter, therefore, we report the first kinetic
study of the thermomagnetic instability, with a special fo-
cus on its consequences for magnetized transport in laser
fusion plasmas. Crucially, we present the first simulations
of the thermomagnetic instability of any kind, and—
contrary to classical theory—find it to be stabilized for

conditions relevant to laser-fusion. By deriving new scal-
ing laws, we show that the principal mechanisms behind
this stabilization are: (i) reduced strength of the Bier-
mann battery due to non-locality; (ii) rapid convection
of magnetic field with the heat flow (the Nernst effect);
and (iii) the large electron mean-free-path compared to
the size of field perturbations. Beyond the immediate
context of laser-fusion, however, the thermomagnetic in-
stability provides an ideal testbed for quantifying the in-
terplay between magnetic field generation, Nernst con-
vection, and magnetized heat-flow more generally [15].
Our scaling laws suggest that the mechanisms (i), (ii),
and (iii) described above will severely limit the impact of
magnetic fields generated by the Biermann battery in a
wide variety of laser-plasma conditions.

The physical processes involved in the thermomagnetic
instability are shown in figure 1, assuming a geometry in
which the plasma is taken to have bulk zeroth-order elec-
tron number density n0(x), and temperature T0(x) gra-
dients in the x-direction only. Should a first-order trans-
verse temperature perturbation δT (y) arise (due, e.g., to
variation in laser intensity), then a Biermann magnetic
field perturbation δBz (y) ∝ |∇δT ×∇n0| is generated in
the z-direction; this in turn induces a y-directed Righi-
Leduc heat-flow δqy toward the hotter regions of the tem-
perature perturbation [1, 6, 7], driving positive feedback,
and unstable growth of Biermann filaments.

Figure 1. Thermomagnetic instability mechanism [6, 7] de-
picting the bulk density and temperature gradients ∇n0 and
∇T0, the temperature perturbation δT (y) (dashed curve), the
induced field δBz(y) (solid curve with arrows), and the result-
ing Righi-Leduc heat flow δqy (arrows in the y-direction).



2

Growth-rates γ can be derived from a linear pertur-
bation analysis of the classical transport equations [1]
assuming δT, δBz ∝ exp(γt + iky), with wavenumber k
[14–16]. In this way one obtains the dispersion relation

γ± =
1

2

{

− [(dT + dR)k
2 − Ñ ] (1)

±
√

[(dT + dR)k2 − Ñ ]2 + 4dTk2[dR(k2G − k2) + Ñ ]

}

,

where instability prevails whenever γ± > 0, and terms
describe: thermal diffusion dT ; resistive diffusion dR;
magnetic-field generation by the Biermann battery (cou-
pled to Righi-Leduc) k2G; and advection of the magnetic

field by the Nernst effect Ñ . These terms are defined by
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where lT ≡ T0/(∂T0/∂x) and ln ≡ n0/(∂n0/∂x) are the
bulk temperature and density length-scales respectively,
and the remaining parameters are: the electron mass me;
the ratio Λ ≡ λei/δ, with skin-depth δ =

√

me/µ0nee2,
where µ0 is the permeability of free space; the Braginskii
collision time τB = cBτei, with cB = 3

√
π/4 a dimension-

less constant; and the electron-ion thermal collision time
τei = (4πv3T )/(ni[Ze2/ǫ0me]

2 log Λei), where log Λei is

the Coulomb logarithm, vT = λei/τei = (2Te/me)
1/2 the

thermal velocity, ǫ0 the permittivity of free space, Z the
atomic number, and ni ≈ ne/Z the ion number density
[14]. The transport coefficients—the resistive diffusivity
α⊥, the thermal diffusivity κ⊥, the Righi-Leduc coeffi-
cient κ∧, and the Nernst coefficient β∧—are dimension-
less functions of Z, and the Hall parameter χ ≡ ωLτB,
with ωL = e|B|/me; these coefficients are expected to be
strongly affected by non-local conditions [12, 15, 25].

Crucially for our study, the analysis used to derive
equation (1) makes assumptions which will not hold rig-
orously in practical contexts [14]. For example, the Bier-
mann term scales as k2G ∝ λ2

ei/lnlT , while the Nernst

term scales as Ñτei ∝ λ2
ei

∂
∂x

(

τei
∂T0

∂x

)

/τeiT0 ∼ λ2
ei/l

2
T ,

meaning that growth-rates are largest when length-scales
ln,T are short compared to the mean-free-path λei, i.e.,
precisely those contexts where non-locality is important.
Nevertheless, the dispersion relation does provide a use-
ful means for estimating the impact of effects.

Ignoring for the moment the Nernst term Ñ , plasma
conditions representative of an ICF hohlraum corona
(Te ≈ 3keV, Z ≈ 50, ne ≈ 1027m−3, ln ≈ 100µm, and
lT ≈ 30µm) suggest a peak growth-rate of γ ≈ 1012s−1

at wavelength λ = 2π/k ≈ 17µm, so that the instability
can be expected to develop within typical nanosecond
pulse lengths, and generate small filaments. Some au-
thors have argued that Nernst advection is likely to in-
crease the growth-rate further [12, 16], while others pro-
pose that fluid motion alone will reduce the growth rate if

it becomes comparable to hydrodynamic rates [17]. How-
ever, in the region close to critical, where the heat flux is
greatest, we find that the Nernst effect is the dominant
convective process; this is because typical Nernst veloc-
ities vN ≈ − (2/5)κ⊥∇Te/ (neTe) ∼ 106ms−1 (inward)
[10, 15] in the plasma corona greatly exceed the typical
ablation velocity vA ∼ 105ms−1 (outward).

For our numerical study of the instability we use the
kinetic code K2 [18, 19] which solves the Vlasov-Fokker-
Planck equation by expanding the electron distribution
function f in spherical harmonics (here truncated before
second-order to prevent collisional Weibel modes from
complicating the analysis [20]). We include electron-
electron collisions on f0 and account for electron-electron
collisions on f1 by multiplying the electron-ion scatter-
ing frequency by the factor (Z + 0.24)/(Z + 4.2), which
is close to unity for our conditions. This common ap-
proximation is discussed in more detail in e.g. [21, 22].
From [22] we estimate that the error associated with
this approximation for the case of Carbon (Z*=6) and
Helium (Z*=2) are about 28% and 220%, respectively.
Our results are therefore only qualitative in the case
of low-Z gases. Maxwell’s equations are solved implic-
itly, which is necessary to avoid artificial B-field gener-
ation in problems involving large heat fluxes. Bulk fu-
sion conditions corresponding to a dense target on the
left boundary with a linear rise in the coronal region on
the right are modeled by setting the electron density to
ne = H(x, lx) + 6[(x − 0.15lx)/lc] × 1027m−3, where lc
is the coronal length scale, lx is the x-domain size, and
H(x, lx) = ñ0+(ñ1− ñ0){1+tanh[(x−0.15lx)/0.1lx]}/2,
with densities ñ0 = 5× 1028m−3, and ñ1 = 2× 1026m−3.
We select Z = 50 to represent an under-dense Au target.
These conditions were motivated by radiation hydrody-
namics simulations of hohlraums of the type shown in
e.g. [23], in which significant volumes of the underdense
plasma region satisfy the criteria for instability.

Heating of the plasma in the under-dense region
(ne < 9.1 × 1027m−3) is modeled according to the rate

∂Te/∂t = [T̃ (x; lx, ly) × 2.7keV − Te]/ps, where T̃ (x) =
(1− ε cos [2πy/ly]) {1 + tanh[(x − 0.7lx)/0.2lx]}/2, with
ε = 0.02, and y-domain size ly. This induces a trans-
versely perturbed heat-flow toward the dense target with
wavelength ly. The left-hand boundary is maintained
close to a temperature of 1keV to approximate the effect
of radiative cooling of the target. The strength of the
perturbation is influenced by the parameter ε, but deter-
mined self-consistently by thermal transport. Increasing
ε does not change our main conclusions. Notice that the
domain size can be varied to study a range of perturba-
tion wavelengths, and plasma scale lengths (though we
fix the coronal scale at lc = 100µm), with boundary con-
ditions reflective in x, and periodic in y.

A set of profiles from a typical simulation is shown in
figure 2; only the corona satisfies the k2G > 0 condition
for field generating instability (due to the sign of lT ln),
and for this reason we direct our attention to this region
(e.g., x & 20µm for lx = 100µm). Here we focus on four
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Figure 2. The B-field (a) and Hall parameter (b) for the
lx = 100µm (ns = 4) case at 360ps. Plot (c) displays line-
outs (y = 37µm) of the temperature Te and heat flux q = |qx|
for the lx = 100µm case at 20ps, where the dashed line is
the critical surface (the classical Braginskii heat flux qB is
displayed for comparison). Plot (d) shows the maximum Hall
parameter that develops in the corona for each simulation ns,
plotted against the corresponding non-locality parameter.

simulations by setting (lx, ly) = (ns × 25µm, lx/2), with
ns ∈ {1, 2, 3, 4}; this allows us to examine four-degrees
of non-locality relevant to ICF plasmas, with peak values
of λei/lT ranging from 0.009 to 0.22. Each simulation is
run for t & 102ps (i.e., ∼ 50 classical growth periods).

As seen by the Hall parameter χ = ωLτB data in figure
2b (data for the lx = 100µm case, with λei/lT ≈ 0.027),
the coronal region is more magnetized than the target
surface because of the longer collision time τei. However,
the peak Hall parameter remains small (χ ≈ 0.026), in-
dicating that the magnetic field fails to grow to levels ca-
pable of affecting transport, or inducing thermomagnetic
instability; this contrasts with the classically predicted
e-folding time tγ = γ−1 for these conditions of 5-20ps,
which is well within the simulation run time (700ps).

Non-local suppression of the heat flux qx into the tar-
get (for the lx = 100µm case) is shown in the line-outs
displayed in figure 2c. In each simulation, the peak mag-
netic field in the corona rises approximately linearly with
time (rather than unstable, exponential growth), and sat-
urates after ∼ 500ps. The peak values of the Hall param-
eter during the simulation are shown in figure 2d, and
plotted against the corresponding (peak) non-locality pa-
rameter λei/lT , indicating it is more difficult to magne-
tize the corona as the non-locality increases. In all cases,
the Hall parameter is minimal (χ ≪ 1).

We now explore the reasons for the lack of magneti-
zation of the corona by considering B-field evolution ac-
cording to the induction equation. Under classical con-
ditions the induction equation is dominated by the Bier-
mann and Nernst terms, i.e.,

∂B

∂t
=

∇Te ×∇ne

ene
+∇× (vN ×B), (4)

where vN ≈ (−2κ⊥∇Te/5neTe) is the Nernst velocity
[10]. In non-local conditions, however, this equation
takes the more general form [24, 25]

∂B

∂t
=

me∇(ne〈v5〉)×∇(ne〈v3〉)
6en2

e〈v3〉2
+∇× (ṽN ×B), (5)

where the angle brackets 〈vm〉 ≡ (4π/ne)
∫∞

0
f0v

m+2dv
denote velocity v moments over the the isotropic compo-
nent of the distribution f0(v), with m ∈ Z. Note that
the first term above describes generalized baroclinic field
generation (accounting for deviations from the classical
Biermann rate), while ṽN = 〈vv3〉/2〈v3〉 is the gener-
alized Nernst velocity; both expressions reduce to their

classical forms when f0 is Maxwellian, i.e., f0 ∝ e−v2

.
Comparing equations (4) and (5), the magnetic field

fails to grow under non-local conditions for two main rea-
sons: first, the generalized baroclinic field generation rate
is much lower compared to the classical (Biermann) rate;
and second, the generalized Nernst effect ṽN remains
strong enough to advect field out of the generation zone.
Both effects are quantified in figure 3a and figure 3b,
where we plot the peak values of the two terms in equa-
tion (5) normalized to their classical values of equation
(4); this gives us a measure of how much the induction
terms deviate from classical expectations as a function
of non-locality λei/lT , with both processes suppressed as
non-locality increases. Note that in each case we focus
on peak values at the location (x, y) = (0.9lx, 0.75ly),
which is always near the region of peak coronal mag-
netic field; however, comparable levels of deviation from
classical predictions are found throughout the simulation.
Power law fits to the simulation data give a convenient
means of determining the approximate degree of reduc-
tion for a given non-locality, in particular, we find that
the non-local baroclinic and Nernst terms follow

∂B

∂t
≈ 0.083

(

λei

lT

)−0.453 (
∂B

∂t

)

classical

, (6)

and |ṽN | = ṽN ≈ 0.0566

(

λei

lT

)−0.593

vN , (7)

where (∂B/∂t)
classical

= |∇ne × ∇Te|/ene is the magni-
tude of the classical Biermann battery, and vN = |vN |
is the magnitude of the classical Nernst velocity. These
fits are valid in the interval λei/lT = [0.009, 0.22], and
should be prevented from exceeding unity if used at
lower λei/lT . We add that—in addition to the hohlraum
coronal plasma conditions considered here—we have per-
formed complementary simulations using conditions rel-
evant to direct-drive plasmas, which also closely follow
power laws (6) and (7).

Although the Nernst velocity is reduced under non-
local conditions, the Nernst effect nevertheless impairs
magnetization because it advects magnetic field from the
corona where it is generated, and into the dense target
region (i.e., in the direction of the heat flow). To illus-
trate this, consider the line-out (at y = 18.5µm) of the
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x-directed heat-flow (the dominant heat-flow direction)
shown in figure 3c; this figure indicates that the rate of
field generation by the baroclinic mechanism is approxi-
mately balanced by the rate of Nernst convection of the
field into the target, significantly reducing the total rate
of change of coronal magnetic field. The stabilizing ef-
fect of Nernst convection was previously demonstrated in
kinetic studies of the collisional Weibel instability [29].

Note that although the Righi-Leduc heat-flow plays a
key role in the field-generating instability, we find that
it is negligible in our simulations due to both the lack of
magnetization, and the effect of what might be termed
magnetic non-locality: the ability of the heat-carrying
electrons to escape the region of magnetic field. Although
non-locality is usually defined with respect to tempera-
ture scale-lengths by λei/lT , when a magnetic field is
present transport is also characterized by a magnetic non-
locality parameter M ≡ rL/lB, where rL = vT /ωL is the
Larmor radius, with lB = |Bz/max(∂Bz/∂x, ∂Bz/∂y)|
as the shortest scale-length of the magnetic field per-
pendicular to its direction. Thus, for the heat-carrying
electrons (velocity ≈ 2.6vT ) to complete a Larmor orbit
without leaving the field region, we require 2.6rL < lB
or M ≡ rL/lB . 0.38 (in addition to the usual condition
χ & 1). The Hall parameter does not account for vari-
ations in the magnetic field strength experienced by the
electron during the period of collisional or magnetic con-
finement. This concept also applies to the other transport
effects involving magnetization of energetic electrons, for
example the cross-field heat-flow q⊥. Since our simula-
tions are in the range 0.5 . M . 42, we expect mag-
netic non-locality to be a key further reason for the lack
of magnetization: heat-carrying electrons leave the mag-
netic field region before significant deflection, limiting its
effect.

It is interesting to note that the classically derived ex-
pression for the thermomagnetic instability growth-rate
γ+ of equation (1) is consistent with the stabilization
seen in our simulations, even though the classical model
is expected to break-down for non-local conditions. Al-
though our simulations show that non-local effects are
important, the inclusion of the classical Nernst convec-
tion term is itself enough to predict stabilization, with
Ñ = (cB/2)(∂β∧/∂χ)(λ

2
ei/τ

2
eiT0)

∂
∂x [τei∂T0/∂x] undeter-

mined by the perturbation analysis, and therefore ap-
pearing as a function of the bulk plasma conditions. Most
previous studies [6, 16, 17] neglected Ñ , or only con-

sidered the case in which Ñ is positive, which leads to
an enhancement of the growth-rate, as motivated by the
idea that Nernst convection can compress the magnetic
field [26]. Nevertheless, Bol’shov [8] and Haines [27] have
pointed out that the thermoelectric effects could lead to
saturation of the field, which is the expected behavior
when Ñ < 0, with Nernst convection rarefying the field.

The behavior of Ñ can be investigated by modeling
the bulk temperature T0 according to a ‘quasi-Gaussian’

profile of the form T0(x) = T̂0(1+ sin[2πx/l̂T ]), where l̂T
is the scale-length of T0, with T̂0 as the half maximum.
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Figure 3. (a) The generalized baroclinic field generation rate,
and (b) the generalized Nernst velocity, each normalized to
their classical value, as a function of non-locality. (c) Line-
outs (at y = 18.5µm) of the generalized baroclinic and Nernst
convection rates at 180ps for the lx = 50µm (n2 = 2) simula-
tions, showing the approximate cancellation of the two terms
throughout the corona (the total field generation rate is plot-
ted for comparison). (d) The peak instability growth-rate γM
of equation (1) as a function of the thermal scale-length lT , for
typical ICF conditions (with and without the Nernst term).

Under these assumptions Ñ(x) takes its greatest value at

x = l̂T /4, with

Ñ(l̂T /4) = −3072

(

∂βc
∧

∂χ

)

ǫ40π
9/2T̂ 4

0

τei (Ze4ne log Λei)
2
, (8)

where the thermoelectric derivative ∂βc
∧/∂χ is calculated

from the polynomial fits [28]. The inclusion of this term
in the dispersion relation of equation (1) is sufficient to
reduce the growth-rate below zero for parameters typical
of laser-plasma coronas. As an example, the growth rate
is plotted in figure 3d as a function of the background
temperature scale-length for the conditions T0 = 3keV,

ne = 1027m−3, Z = 50, l̂T = ly, and Ñ = Ñ(l̂T /4)/2;
this represents a conservative estimate for the effect of
Nernst damping, because in realistic scenarios the back-
ground temperature scale length l̃T is shorter than the
transverse perturbation scale length ly, and therefore
Nernst convection is more rapid. The efficient damping
by Nernst across a wide range of ICF-relevant temper-
ature scale lengths, indicated in figure 3d, supports the
conclusion drawn from the kinetic simulations.

We note a promising platform for the study of magne-
tized transport instabilities could involve the heating of a
uniform gas by radiation from a pulsed-power device. By
using a gauze, the wavelength of the heat source could be
varied and magnetic field strength measured as a function
of this wavelength and gas density [30].

In summary, we have performed 2D Vlasov-Fokker-
Planck simulations of magnetic field generation by the
Biermann battery (and, more generally, the baroclinic
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mechanism) in laser-plasma interactions relevant to in-
ertial fusion, including the first numerical study of field
generation by the thermomagnetic instability [6, 7]. Con-
trary to classical expectation, we find that the ability
of self-generated magnetic fields to affect transport is
strongly inhibited by three key mechanisms: (i) a reduc-
tion of the baroclinic (Biermann) rate of field generation
in non-local conditions; (ii) the convection of fields out
of the generation region by the generalized Nernst effect;

and (iii) the relatively small size of magnetic field regions
compared to the Larmor radius of the heat-carrying elec-
trons (“magnetic non-locality”). Crucially, these mecha-
nisms stabilize the thermomagnetic instability in condi-
tions relevant to laser fusion, and significantly reduce the
effect of magnetic fields on transport in coronal plasmas.

This work was performed under the auspices of the
U.S. Department of Energy by LLNL under Contract
DE-AC52-07NA27344 and release LLNL-JRNL-730526.
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