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Motivated by the prediction of fractonic topological defects in a quantum crystal, we utilize a
reformulated elasticity duality to derive a description of a fracton phase in terms of coupled vector
U(1) gauge theories. The fracton order and restricted mobility emerge as a result of an unusual
Gauss law where electric field lines of one gauge field act as sources of charge for others. At low
energies this vector gauge theory reduces to the previously studied fractonic symmetric tensor gauge
theory. We construct the corresponding lattice model and a number of generalizations, which realize
fracton phases via a condensation of string-like excitations built out of charged particles, analogous
to the p-string condensation mechanism of the gapped X-cube fracton phase.

Introduction. Motivated by continued interest in topo-
logical quantum matter and by a search of fault-tolerant
quantum memory, recent studies have led to fascinating
developments in an exotic class of quantum spin-liquid
models[1–7]. These are characterized by many nontrivial
properties, the most unusual of which are system-size-
dependent ground state degeneracy and the existence of
quasi-particles, dubbed“fractons”, that exhibit restricted
mobility. Namely, there are quasi-particles confined to
zero-, one- and/or two-dimensional subspaces of the full
three-dimensional space of the model. While such fracton
phases were originally discovered in fully gapped phases
of commuting projector lattice spin Hamiltonians, it was
more recently pointed out [8], that fractonic charges are
also realized in gapless phases of U(1) symmetric tensor
gauge theories [9].

In a parallel development, it was observed by one of us
(L.R.) [10] that such restricted quasi-particle mobility is
strongly reminiscent of the immobile disclinations and
glide-only dislocations in an ordinary two-dimensional
(2D) crystal, described by a symmetric strain tensor field.
This conjecture of fracton-elasticity duality was reported
and moreover explicitly demonstrated in [11], utilizing a
generalization of boson-vortex duality [12, 13]. It was
shown that a 2+1D quantum crystal is dual to a sym-
metric tensor gauge theory, with disclinations and dislo-
cations mapping onto fractonic charges and their dipolar
bound states, and with stress tensor σik and momentum
vector πk fields respectively corresponding to the electric
tensor Eik and magnetic vector Bk fields.

Motivation and results. An important source of insight
into fracton physics has been to relate apparently exotic
fracton states to more familiar quantum phases of mat-
ter. Indeed, the fracton-elasticity duality is an example
of such a relationship. Related progress has also been
made for certain gapped fracton phases, via a construc-
tion of these phases in terms of coupled layers of ordinary
2D topologically ordered states [14, 15]. So far there is a
relative paucity of relationships between gapless fracton
phases and better understood phases or theories. Most
U(1) tensor gauge theories are not dual to elasticity, and

even for those that are, developing alternative viewpoints
is highly desirable.

Remarkably, the fracton-elasticity duality itself con-
tains the seed of another such point of view. There is a
sense in which elasticity, formulated in terms of a sym-
metrized strain tensor uik = 1

2 (∂iuk + ∂kui) is a system
of two “spin” flavors of XY models, joined together via
“spin-space”coupling, as in systems with spin-orbit inter-
action. However, in the absence of spin-space coupling,
such a system dualizes to two independent flavors of U(1)
vector gauge theory, and lacks fractonic charges. It is
thus natural to ask whether fractonic tensor gauge theo-
ries can be formulated in terms of coupled vector gauge
theories and if so, what minimal ingredients are required
for such coupling. Some progress has been made along
these lines from a different point of view, starting with a
vector U(1) gauge theory and gauging certain global sym-
metries to obtain a fractonic tensor gauge theory [16]. We
make contact with this result below in greater detail.

In this Letter, we first utilize a reformulated fracton-
elasticity duality to derive a 2+1D U(1) vector gauge the-
ory that hosts fractonic charges and is equivalent at low
energy to the rank-2 symmetric tensor U(1) gauge the-
ory with scalar charge, dubbed the “scalar-charge the-
ory”. We then discuss a lattice version of the same theory,
which allows the scalar-charge theory to be understood
starting from two decoupled vector U(1) gauge theories,
and condensing certain charged loops. Finally, we dis-
cuss generalizations of our lattice construction that pro-
vide constructions of a new class of fractonic tensor gauge
theories as coupled vector gauge theories.

The continuum Hamiltonian density we obtain is given
by

H̃ =
1

2
C|Ek|2 +

1

2
(∇×Ak)2 +

1

2
K|e|2

+
1

2
(∇× a +Aa)2 −Ak · Jk − a · j . (1)

which involves three U(1) vector gauge fields with electric
fields Ek (with flavors k = x, y) and e and corresponding
canonically conjugate vector potentials Ak and a. We
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denote the corresponding charge densities by pk and ρ,
and currents by Jk and j, with pk and Jk referred to as
the dipole charge and dipole current, respectively. More-
over, Aa = εikAik, and we use a short-hand notation
where the curl of a 2D vector field is implicitly its scalar
z-component, i.e., ∇× a ≡ ẑ ·∇× a.

The Hamiltonian is supplemented by the Gauss’ law
constraints:

∇ ·Ek = pk − ek, (2)

∇ · e = ρ. (3)

Crucially, the components of the electric field ek appear
as additional dipole charge in the Gauss’s law (2).

The generalization to d dimensions is straightforward
and consists of d+ 1 U(1) gauge fields obeying the same
Gauss’ laws but with k = 1, . . . , d. The main difference in
the Hamiltonian is that the (∇×a+Aa)2 term is replaced
by a sum of the d(d − 1)/2 terms of the form (∂iaj −
∂jai +Aij −Aji)2. The resulting theory is equivalent at
low energy to the d-dimensional scalar-charge theory, as
we will detail below.

The fractonic nature of the ρ charges can be seen by
observing that moving such a charge requires creating or
destroying field lines of the e electric field, but since these
field lines themselves carry gauge charge, a single “piece”
of field line cannot be locally created or destroyed. The
immobility of these charges is also manifest in that gauge
invariance requires the current j to vanish identically, as
we elaborate below. We next turn to the derivation of this
fractonic coupled vector gauge theory and its connection
to the previously studied tensor scalar-charge theory.
Derivation. To this end, we pass to Lagrangian formalism
and begin with an elastic theory of a 2+1D quantum
crystal formulated in terms of the phonon field uk and its
canonically conjugate momentum πk. For simplicity we
take the elastic tensor Cij,kl to be Cij,kl = Cδikδjl. The
generalization to an arbitrary Cij,kl is straightforward.

Ref.11 started with such a theory written in terms of
the symmetrized strain uik = ∂iuk + ∂kui, and showed
it is dual to a symmetric tensor gauge theory, where
fractonic charges correspond to disclinations and dipoles
to dislocations. To get to an equivalent flavored vector
gauge theory description, we reformulate the elastic the-
ory in terms of “minimally”-coupled quantum XY mod-
els, introducing the orientational bond-angle field, θ and
its canonically conjugate angular momentum density L.
The Lagrangian density is given by

L = πk∂tuk + L∂tθ −
1

2
π2
k −

1

2
C(∂iuk − θεik)2

− 1

2
L2 − 1

2
K(∇θ)2. (4)

Due to the coupling to θ, the anti-symmetric part of the
unsymmetrized strain ∂iuk is massive, below a scale set
by C, similar to the Higgs mechanism for gauge fields.

Integrating out θ results in the standard elasticity theory
formulated in terms of the symmetrized strain uik, which
is the starting point of Ref.11. To proceed, it is conve-
nient to decouple the elastic and orientational terms in
(4) via Hubbard-Stratonovich vector fields, stress σk and
torque τ , resulting in the Lagrangian density

L = πk∂tuk + L∂tθ − σk ·∇uk + σaθ − τ ·∇θ

+
1

2
C−1σ2

k −
1

2
π2
k −

1

2
L2 +

1

2
K−1τ 2, (5)

where σa ≡ εikσik.
For a complete description, in addition to the single-

valued (smooth) Goldstone mode degrees of freedom, θe

and uek, we must also include topological defects. A
disclination defect is defined by a nonsingle-valued bond
angle with winding

∮
dθs = 2πs/n around the discli-

nation position, or equivalently in a differential form,
∇ × ∇θs = 2πs

n δ2(r) ≡ ρ(r). The integer disclination
charge s corresponds to an integer-multiple of 2π/n miss-
ing (added) wedge of atoms for s > 0 (s < 0) in a Cn
symmetric crystal, with most common case of a hexago-
nal lattice, n = 6.

A dislocation is a point vector defect, around which
the displacement uk is not single-valued, with wind-
ing

∮
duk = bk, or equivalently in a differential form,

∇ ×∇usk = bkδ
2(r) ≡ bk(r). An elementary dislocation

is a dipole of ±2π/n disclinations and is characterized
by a 2D Burgers vector charges, bk, that takes values
in the lattice. An edge dislocation corresponds to a ray
of missing or extra lattice sites, with a Burgers vector
lying in the 2d plane of the crystal. A nontrivial con-
figuration of dislocations, b(r) can also contribute to a
disclination density, given by sb(r) = ẑ ·∇ × b(r), with
a single disclination corresponding to an end point of a
ray of dislocations.

Expressing the phonon and bond-angle fields in terms
of corresponding singular (s) and elastic (e) parts, uk =
uek+usk, θ = θe+θs, and integrating over the elastic parts,
gives the conservation of linear and angular momentum,
∂tπk −∇ · σk = 0 and ∂tL−∇ · τ = σa.

Expressing linear momentum conservation constraint
in terms of dual magnetic and electric fields, πk = εkjBj ,
σik = −εijεk`Ej`, leads to the k-flavored Faraday equa-
tions, ∂tBk + ∇ × Ek = 0. As in standard electrody-
namics, the Faraday law is solved by k-flavored vector
Ak and scalar A0k gauge potentials, Bk = ∇ × Ak,
Ek = −∂tAk − ∇A0k. We emphasize that, in con-
trast to the symmetric tensor approach[11, 17], here, the
k = (x, y)-flavored vector gauge field Ak has components
Aik that form an unsymmetrized tensor field.

Using these definitions reduces the conservation of an-
gular momentum to ∂t(L− Aa)−∇ · (τ − ẑ×A0) = 0,
which is then solved by introducing another set of vector
a and scalar a0 gauge fields, giving

L = ∇× a +Aa, τk = εkj(∂taj + ∂ja0 −A0j). (6)
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Using these gauge fields to eliminate σk, πk, τ and L,
gives an effective Lagrangian density

L̃ =
1

2
C−1(∂tAk + ∇A0k)2 − 1

2
(∇×Ak)2 (7)

+
1

2
K−1(∂tak + ∂ka0 −A0k)2 − 1

2
(∇× a +Aa)2

+ Ak · Jk −A0kpk + a · j− a0ρ.

Here, the dipole charge pk is given by the dislocation
density pk = εlkbl = (ẑ × b)k, the fracton charge ρ
is the disclination density, and the corresponding cur-
rents are given by Jk = εlkẑ× (∂t∇ul −∇∂tul) and j =
ẑ× (∂t∇θ−∇∂tθ). Finally, using Hubbard-Stratonovich
transformations to introduce electric fields canonically
conjugate to each vector potential, we obtain (1) in La-
grangian form.

The unusual Gauss’s law (2) couples three vector gauge
theories, with k-th component of the e field acting as an
additional source of charge in the Gauss’s law for Ek. We
also note that taking the divergence on the second index
k of the Gauss’s law for Ek, (2) and using the second law
for e to eliminate ∇ ·e from the resulting right hand side
gives,

∂i∂kEik = ρ̃. (8)

This thereby recovers the generalized Gauss’s law of
scalar-charge tensor gauge theory, with ρ̃ ≡ −ρ+∇·p the
total charge contribution,[11] that encodes the additional
dipole conservation responsible for immobility of frac-
tonic charges.[8] We note that, in contrast to the scalar-
charge theory, Eik is not a symmetric tensor, but effec-
tively becomes symmetric at low energy as we demon-
strate below.

We note that the Lagrangian (7) is invariant under a
deformed gauge transformation,

Ak → Ak + ∇χk, A0k → A0k − ∂tχk, (9)

ak → ak + ∂kφ− χk, a0 → a0 − ∂tφ, (10)

with (10) ensuring that ∇ × a + Aa is gauge invari-
ant. Under the χk gauge transformation, the current
source terms in (7) shift by −χkjk + ∂tχkp̃k + ∇χk · Jk,
where p̃k = pk − ek is the effective dipole density, that
is a combination of microscopic dipoles and electric field
generated by pairs of fracton charges. Requiring gauge
invariance then leads to the dipole continuity equation
∂tp̃k + ∇ · Jk = −jk, where dipole conservation is vio-
lated by a nonzero fracton current j. It follows that in the
absence of gapped dipoles, j = 0 for on-shell processes,
i.e. isolated disclinations are immobile fractonic charges.

The harmonic [21] elasticity theory (4) enjoys the sym-
metries

uk → uk + αk + βεkjrj , (11)

θ → θ − β.

The constant shift of uk by αk can be interpreted as con-
tinuous translational symmetry. The terms proportional
to β are a small-angle rotation, where the displacements
uk in the initial configuration (before symmetry transfor-
mation) are also small. By introducing background gauge
fields for these symmetries (see Supplementary Material)
and carrying out the duality in the presence of the back-
ground fields, we identify corresponding conserved cur-
rents on the gauge theory side. Associated with the αk
translational symmetry, we have the linear momentum
current Jmµk, where the conserved density Jm0k = εkjBj
is the magnetic flux, and Jmik = εkjεi`E`j . Operators
transforming under αk are thus monopole operators of
the Ak gauge fields. Associated with the β rotation sym-
metry and conservation of angular momentum, we have
the magnetic flux current of the a gauge field, jmµ . Due
to the coupling between the vector gauge fields, the naive
magnetic flux ∇ × a is not gauge-invariant, requiring
modified expressions jm0 = εij(∂iaj +Aij)− riεijJm0j and
jmj = εij(∂ia0 + ∂tai −A0i)− riεikJmjk. We note that the
current jmµ is explicitly position-dependent, similar to the
symmetries discussed in [18]. If the position-dependent
terms are dropped, jmµ remains gauge-invariant but is
no longer conserved. This identification of magnetic flux
currents in the coupled vector gauge theory with symme-
tries of the elasticity theory is useful in our discussion of
lattice models below.

We conclude by demonstrating that in fact this dual
coupled vector U(1) gauge theory, at low energies is
indeed equivalent to the symmetric tensor gauge the-
ory. To this end, we observe that the enlarged gauge
redundancy allows us to completely eliminate ak from
the Lagrangian (7), by choosing χk = ak. The term
1
2 (∇ × a + Aa)2 reduces to 1

2A
2
a, thereby gapping out

the antisymmetric component Aa = εijAik. Thus, at
energies well below this gap, εikAik ≈ 0, and only the
symmetric components of Aik remain as active degrees
of freedom. Furthermore, the electric field term reduces
to 1

2K
−1(∂ta + ∇a0 −A0k)2 → 1

2K
−1(∇a0 −A0k)2, en-

forcing A0k = ∂kα0. Thus at low energies, this reduces
the Lagrangian exactly to that of the symmetric tensor
gauge theory, with the Gauss’ law (8).

Lattice model and charged loop condensation. We now
consider a lattice version of the Hamiltonian (1). For
simplicity of presentation we first work in 2D, then dis-
cuss the generalization to arbitrary dimension. The 3D
version of the model appeared previously in [16]. We use
the resulting model to obtain a physical picture of the
scalar-charge theory in terms of condensation of certain
charged loops. This differs in perspective from the results
of [16], where the fracton phase arises upon gauging cer-
tain global symmetries. There are subtleties particular
to the 2D case that we discuss, having to do with the
role of compact gauge fields and associated symmetries.

The lattice geometry consists of three interpenetrat-
ing 2D square lattices as shown in Fig. 1. One of these
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we refer to as the “underlying lattice,” and the k-lattice
(k = x, y) is a square lattice with vertices the k-directed
links of the underlying lattice. We place the electric field
e and vector potential a on the links of the underlying
lattice, with Ek,Ak placed on the links of the k-lattice.
The e,a gauge field is taken to be compact, thereby al-
lowing a loop-condensation phase transition into the frac-
ton phase, with e taking integer eigenvalues and a a 2π-
periodic phase. For simplicity (apart from 2D), Ek and
Ak are taken non-compact, with real eigenvalues. The
Gauss’s laws are ∇ · Ek = ek and ∇ · e = 0, where the
derivatives denote lattice finite differences. For simplic-
ity, we do not include any additional charged matter;
including it does not affect the following discussion.

FIG. 1: Geometry of the lattice coupled vector gauge theory
Hamiltonian (12). Gray solid lines represent the underlying
square lattice. On the left, a single plaquette is shown for the
x-lattice (dashed lines; red online) and the y-lattice (dotted
lines; blue online). On the right, the thick solid line repre-
sents a loop of e electric field on a plaquette of the underlying
lattice, with the arrows indicating the direction of e. Because
the ek electric field lines carry gauge charge of the Ek electric
field as expressed by the Gauss law (2), there are also neces-
sarily lines of Ex (dotted line with arrow; blue online) and Ey

(dashed line with arrow; red online) electric field.

We consider the following lattice Hamiltonian counter-
part of (1):

H =
UE
2

∑
`∈Lk

E2
k` +

Ue
2

∑
`∈L

e2` +
KE

2

∑
�k

(∇×Ak)2

− Ke

∑
�

cos
[
(∇× a)� +Axy(`x)−Ayx(`y)

]
.(12)

Here, k = x, y is summed over in those terms where it
appears, and L and Lk are the sets of links in the under-
lying lattice and k-lattice, respectively. Similarly � and
�k denote plaquettes of the underlying lattice and the
k-lattice. The expression (∇× a)� is the lattice line in-
tegral of a taken counterclockwise around the perimeter
of the plaquette �. To understand the last term, note
that a single x-lattice link `x and single y-lattice link `y
pass through the center of each plaquette �, as shown on
the left of Fig. 1. This term is thus a gauge-invariant op-
erator that creates electric field configurations like that
shown on the right of Fig. 1.

For the generalization to d dimensions, we start
with an underlying hypercubic lattice, and d hypercu-
bic k-lattices, with k = 1, . . . , d, whose vertices are
centered on k-directed links of the underlying lattice.
The Ke operator is replaced with a term proportional
to cos

[
(∇× a)� +Aij −Aji

]
, where � is one of the

d(d− 1)/2 types of plaquettes in the underlying lattice,
bisected by the two perpendicular links `i and `j .

Considering the 3D case, Ref. [16] showed that one ob-
tains the Hilbert space of the scalar-charge theory upon
taking the limit Ke → ∞. We take a different point
of view, considering the phases of the Hamiltonian (12).
When Ue � Ke, we put the e gauge field into its con-
fining phase, with e ≈ 0, and electric field loops costing
an energy proportional to their length. In this limit e
can be integrated out and we wind up with d decoupled
Ek,Ak non-compact U(1) vector gauge theories.

Starting from this phase, we increase Ke, thus increas-
ing the fluctuations of the e loops. After Ke is raised
above a critical value, the e loops proliferate and con-
dense. This is analogous to the p-string condensation
in the coupled layer construction of the X-cube fracton
model [14, 15], because each e loop is built from point-
like charged particles of the Ek gauge fields. We can ac-
cess the condensed phase by taking Ke large and expand-
ing the cosine in the last term. The resulting Gaussian
model is simply a lattice regularization of the continuum
Hamiltonian (1), and is identical at low energy to the
scalar-charge tensor gauge theory.

In d = 2 this picture breaks down, and – as for a single
compact U(1) vector gauge theory [19] – there is only one
phase. This occurs because when e is compact, we only
have the two U(1) symmetries associated with conserva-
tion of ∇×Ak magnetic flux, with currents Jmµk discussed
above. When Ue � Ke, we have two decoupled non-
compact U(1) gauge theories in their deconfined phase,
which is of course dual to the ordered phase of two de-
coupled XY models, where the two XY currents are Jmµk.
When Ue � Ke, naively one may expect to be able to
expand the cosine to obtain the Hamiltonian (1). But,
as we can see from the dual elasticity description, the
resulting theory is only distinct from two decoupled XY
models in the presence of the third jmµ U(1) symmetry,
which is absent for compact a for any finite Ke/Ue. The
absence of a phase transition is obvious on the elasticity
side, corresponding to an incommensurate substrate that
breaks rotational symmetry and thereby gaps out θ in
(4), reducing to two XY models for ux and uy. Therefore
there is only one phase in the d = 2 case. Alternatively
we could have taken e to be non-compact, in which case
we do have all three U(1) symmetries, but there is still
only one phase.

These considerations have an interesting consequence
for the d = 2 scalar-charge theory. Namely, if only the
two Jmµk symmetries are present, there is no difference
between this theory and two non-compact vector U(1)
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gauge theories. We note that these conclusions can be
obtained working entirely on the lattice; that is, we can
follow standard techniques to obtain a dual lattice theory
of (12), which at the Gaussian level and in the continuum
limit is identical to elasticity.

Generalization to vector-charge theory. We briefly de-
scribe a generalization of the above construction that
reduces to a different fractonic symmetric-tensor gauge
theory at low energy, the vector-charge theory [8]. In the
vector-charge theory, as with the scalar-charge theory,
the electric field εij and gauge potential αij are sym-
metric tensors, but the Gauss’ law constraint is different,
given by ∂iεij = ρj , with the gauge charge ρj now carry-
ing a vector index.

Focusing on 3D and working in the continuum for sim-
plicity, we introduce a theory of coupled vector gauge
theories that reduces to the vector-charge tensor gauge
theory at low energy. We introduce six U(1) gauge fields,
with electric fields ek and Ek (k = x, y, z), and cor-
responding vector potentials ak and Ak. We take the
Gauss’ law constraints to be

∂ieik = 0 (13)

∂iEik = εkijeij , (14)

which express that the anti-symmetric components of eij
act as sources of gauge charge for the Ek electric fields.
These constraints are encoded in the Lagrangian density

L = −eik(∂taik + ∂ia0k + εlikA0l)− Eik(∂tAik + ∂iA0k)

− C

2
E2
k −

1

2
(∇×Ak)2 − K

2
e2k −

1

2

∑
ij

b2ij , (15)

where bij = εikl∂kalj +Aji − δijAkk. In the Supplemen-
tary Material, we show that this theory reduces at low en-
ergy to the vector-charge theory, and discuss how to carry
out the construction on the lattice. We also briefly re-
mark on a generalization to the 2D vector charge theory.
The Supplementary Material also discusses some further
generalizations of the lattice coupled vector gauge theory
construction of the scalar-charge theory, that reduce at
low energy to the (m,n) theories of [20], and the version
of the scalar-charge theory where the electric field is a
traceless, symmetric tensor [8].

In summary, motivated by the fracton-elasticity
duality[10, 11, 17], we utilized its reformulation to derive
a fractonic coupled U(1) vector gauge theory representa-
tion in terms of d + 1-coupled gauge fields, where com-
ponents of one type of electric field act as charges for the
remaining d gauge theories. At low energies this vector
description is identical to fractonic scalar-charge tensor
gauge theory. We used a lattice version of this model to
discuss fracton order in terms of proliferation of electric
field loops. We also proposed a number of generaliza-
tions of this construction, making contact with fractonic
tensor gauge theories that are not dual to elasticity.
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