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In an optical lattice entropy and mass transport by first-order tunneling is much faster than spin
transport via superexchange. Here we show that adding a constant force (tilt) suppresses first-order
tunneling, but not spin transport, realizing new features for spin Hamiltonians. Suppression of the
superfluid transition can stabilize larger systems with faster spin dynamics. For the first time in
a many-body spin system, we vary superexchange rates by over a factor of 100 and tune spin-spin
interactions via the tilt. In a tilted lattice, defects are immobile and pure spin dynamics can be
studied.

The importance of spin systems goes far beyond quan-
tum magnetism. Many problems in physics can be
mapped onto spin systems. Famous examples are the
Jordan-Wigner transformation between spin chains and
lattice fermions, and the mapping of neural networks
to Ising models. The study of spin Hamiltonians has
provided major insights into phase transitions and non-
equilibrium physics. Therefore, the properties of well
controlled spin systems are explored using various plat-
forms [1].

In the field of ultracold atoms, such Hamiltonians are
realized by a mapping from the Hubbard model in the
Mott insulating (MI) state to Heisenberg models with
effective spin-spin coupling given by a second order tun-
neling process (superexchange) [2, 3]. Although immense
progress has been made towards the realization of spin-
ordered ground states [4–7], a major challenge is to reach
low spin temperatures. A promising route is adiabatic
state preparation [8], but in a trapped system a higher
entropy region surrounds a low-entropy MI core, whose
ultimate temperature and lifetime is limited in most cases
by mass or energy transport. A fundamental limitation
of superexchange-driven schemes is that the lattice depth
controls both mass transport (occuring at the tunneling
rate t/~) and the effective spin dynamics (at t2/(~U),
where U is the on-site interaction). Schemes isolating
the MI by shaping the trapping potential have been pro-
posed [9–13].

Here we use a controlled potential energy offset be-
tween neighboring sites (a tilt) to decouple spin transport
from density dynamics in the MI regime. Tilted lattices
have been used before to suppress tunneling (in spin-orbit
coupling schemes with laser-assisted tunneling [14–17]),
or to implement spin models using resonant tunneling
between sites with different occupations [18–21]. Energy
offsets have been used in double-well potentials to modify
superexchange rates [22], between sublattices to suppress
first-order tunneling and to observe magnetization decay
via superexchange [23].
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FIG. 1. In a tilted lattice with energy offset per site ∆, tun-
neling at t/~ is suppressed, while superexchange at J(∆)/~ is
still allowed. This enables the slower superexchange processes
to dominate the dynamics even in systems with defects.

The implications of using an off-resonant tilt for study-
ing spin physics fall into four categories: (i) A tailored
density distribution can be chosen which is frozen-in by
the tilt. (ii) The tilt suppresses the transition to a super-
fluid (SF). We use these two features to stabilize larger
MI plateaus at lower lattice depths. (iii) The sign and
magnitude of the superexchange interaction can be tuned
with the tilt which allows access to a larger range of mag-
netic phases. (iv) In a tilted MI with n atoms per site,
number defects (n± 1) are localized. This turns t-J mod-
els [24] into spin models with static impurities and allows
the study of pure spin dynamics.

In a tilted lattice, the energy difference between lat-
tice sites prevents first-order tunneling. More precisely,
the dynamics of a single particle are Bloch oscillations
[25, 26] and if the tilt per site ∆ is larger than the band-
width, their amplitude is smaller than a lattice site. In
contrast, swapping particles incurs no energy cost, pre-
serving superexchange (Fig. 1), but with a modified ma-
trix element. For n= 1 it is [22]:
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where tunneling resonances at ∆ =U/m (m= 1, 2, 3...)
[21] should be avoided. We implement the tilt with an
AC Stark shift gradient from a far-detuned 1064 nm laser
beam, offset by a beam radius from the sample. We load
a 7Li Bose-Einstein condensate [27] into a 3D 1064 nm
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optical lattice in the MI regime. Although the tilt can
be applied in any direction, here we use a tilt only along
one axis of the lattice and study 1D dynamics (see [28]).

(i) Preparing large non-equilibrium MI plateaus. In
most optical lattice experiments, the number of atoms
(and therefore the signal-to-noise ratio of measurements)
is not determined by the number of available atoms from
the cooling cycle, but by the available laser power (and
therefore beam size) for the optical lattice. This deter-
mines the harmonic confinement potential at each lattice
depth. The equilibrium size of a MI plateau with n atoms
per site is determined by the balance between the local
chemical potential µ≈nU and the harmonic trapping
potential. Its radius r∝µ1/2, so the total atom number
N ∝ U3/2, where U is controlled by the scattering length
a via a Feshbach resonance [29]. We find that the n= 1
MI plateau loaded at a= 300 a0 has an order of magni-
tude more atoms than the one loaded at a= 50 a0 (see
Fig. S3 in [28]). We initialize the experiment by loading
45,000 atoms at a= 300 a0 at a lattice depth V = 35ER
in a pure n= 1 MI with diameter of 40-45 sites and then
freeze in this distribution by applying a tilt with a 300µs
linear ramp, much faster than ~/t= 28 ms. This allows
the decoupling of MI state preparation from further spin
experiments, which could be carried out at very different
scattering lengths and lattice depths.

(ii) Increasing the speed of superexchange. The speed
of superexchange is proportional to t2 and therefore in-
creases dramatically at lower lattice depths. Due to com-
peting heating and loss processes, most experiments on
spin physics are carried out at lattice depths only slightly
above the SF-MI transition. The melting of the Mott
plateaus at the transition can be suppressed by a tilt
and spin Hamiltonians can be studied at lattice depths
even below the phase transition. Next, we experimentally
determine how much the lattice depth can be lowered.

We associate the breakdown of the initial MI plateau
with the appearance of doublons (two atoms per site
[30]), which are measured by interaction spectroscopy.
We transfer only atoms in n= 2 sites to another hyper-
fine state by using the interaction-shifted transition fre-
quency, so that atoms in n= 1 sites are not affected [29].
After loading, we decrease the scattering length, lower
the lattice depth Vz along the direction of the tilt while
keeping Vx =Vy = 35ER, and hold for 10 ms. We detect
doublons by ramping Vz back to 35ER on a timescale
∼ ~/t but slower than ~/U , so that there is local (but
not global) equilibrium. The fraction of atoms on n= 2
sites at a= 50 a0 is shown in Fig. 2a. Below a critical lat-
tice depth Vc, a sharp increase in the number of doublons
is observed. Without the tilt Vc = 11.7ER, while with a
tilt of ∆ = 1.65U , Vc = 7.3ER, implying an increase in
the superexhchange rate from Eq. (1) by a factor of 5 at
the critical depth in the tilted lattice.

To generalize this result, we repeat the measurement
at several scattering lengths (inset of Fig. 2a). All Vc are

10 20 30
0

0.1

0.2

0.3

Fr
ac

tio
n 

of
 a

to
m

s 
in

 n
=2

 = 0
 = 1.65U

100 200 300
Scattering length (a0)

0

5

10

C
rit

ic
al

 d
ep

th
 V

c
(E

R
)

a)

10 20 30
Lattice depth (ER)

0

0.05

0.1

0.15

C
oh

er
en

tly
 a

dm
ix

ed
 d

ou
bl

on
 fr

ac
tio

n

10 20 30
Lattice depth (ER)

0

0.1

0.2

0.3

Fr
ac

tio
n 

of
 a

to
m

s 
in

 n
=2

slow ramp-up
fast ramp-up

b)

FIG. 2. Stabilization of large Mott plateaus at small lattice
depths. a) Fraction of atoms in doubly occupied sites as a
function of lattice depth Vz measured with (gold) and with-
out (blue) a tilt at a= 50 a0. Inset: Critical lattice depth
Vc (dashed lines in main plot) below which the fraction of
atoms in n= 2 is more than 3% above the noise floor. Two
initial density distributions are used: (i) nonequilibrium: an
n= 1 plateau prepared at a= 300 a0 (circles) and (ii) equilib-
rium: an n= 1 plateau prepared at the final scattering length
(triangles). The dotted line corresponds to the SF-MI tran-
sition. b) Virtual and real doublon populations at a= 50 a0

and ∆ = 1.65U . The fraction of coherently admixed doublons
is the difference between the doublons from the fast and the
slow ramp, shown in the inset. Solid line: probability of dou-
blon admixture. The shaded region accounts for tilt inhomo-
geneity. The dashed lines corresponds to Vc. The negative
values of the coherent doublon fraction are an artefact in the
breakdown regime.

above the threshold for the SF-MI transition because of
the spatial shrinking of the equilibrium Mott plateaus in
a harmonic trap [31, 32]. Without the tilt, Vc is deter-
mined by the proximity to the SF-MI transition and the
breakdown of plateaus is driven by first-order tunneling
in the single-band approximation. Note that global den-
sity redistribution is not responsible for the breakdown in
this measurement, as indicated by the fact that when the
lattice is loaded at the final scattering length, so that lit-
tle or no density redistribution is expected, we see similar
Vc (triangles in Fig. 2a).

With the tilt, this melting can be suppressed and we
observe that Vc is decreased, resulting in faster spin dy-
namics. However, we observe that we cannot stabilize
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the Mott plateaus by tilts for lattice depths smaller than
Vc≈ 6.3ER which we interpret as a breakdown of the
single-band approximation. We find Vc to have only a
weak dependence on tilt for the range of tilts used (0.3
to 0.9ER). Note that at this lattice depth, the bandgap
is 3ER, and the width of the first excited band is 1.6ER.
At a somewhat lower lattice depth of 4ER, we observe
that atoms are accelerated out of the lattice, a clear sign
for the breakdown of single-band physics. In cubic 2D
and 3D lattices, the motion separates in x, y, and z and
the effective breakdown of the single-band approximation
should be independent of dimension. Assuming that the
lattice can be lowered to 6.3ER in 3D, then at a= 100 a0
where the SF-MI transition is at Vc = 13.3ER, superex-
change can be 50 times faster at ∆/U = 1.4, where J/~
in Eq. (1) is the same as for ∆ = 0.

The tilt suppresses the real population of dou-
blons, responsible for the breakdown of MI plateaus,
but not the virtual ones (coherent doublon admix-
tures), responsible for superexchange. In leading or-
der in perturbation theory in t, the n= 1 MI ground
state has doublon-hole admixtures with probability
P = 2t2/(U −∆)2 + 2t2/(U + ∆)2. These admixtures are
taken into account by a unitary transformation which
leads to the effective spin Hamiltonian acting on the un-
perturbed states [3, 33]. As perturbation theory breaks
down when t and U become comparable, the distinction
between real and virtual doublons is blurred. Virtual
doublons have been detected without a tilt in [34, 35].
We measure the number of coherently admixed doublon-
hole pairs as the difference between all doublons (mea-
sured with a lattice ramp-up faster than ~/U , projecting
the wavefunction onto Fock states) and the real doublons
(incoherent doublons, measured with a slow, locally adia-
batic ramp-up as in Fig. 2a). Fig. 2b shows that the pres-
ence of the tilt does not inhibit this coherent admixture,
but only modifies its probability. At Vc perturbation the-
ory breaks down.

(iii) Tuning the Heisenberg parameters with a tilt.
Tilts comparable to U tune the strength and sign of the
superexchange interactions (Eq. (1)). This effect has so
far only been observed for two particles in a double-well
[22]. Here we demonstrate it for the first time in a many-
body system by measuring the relaxation dynamics of a
nonequilibrium state in a spin chain.

A spin-1/2 Heisenberg model [2] is implemented using
the lowest two hyperfine states of 7Li in a high magnetic
field

H = Jz
∑
〈i,j〉

Szi S
z
j + Jxy

∑
〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
(2)

where 〈i, j〉 denote nearest neighbors, Sαi are spin ma-
trices, and Jz and Jxy are the superexchange parame-
ters (see [28]). Similarly to [36, 37] (our preparation is
described in [28]), we create a spin pattern and study
its relaxation. Using π/2 pulses and a pulsed magnetic
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FIG. 3. Relaxation of a non-equilibrium spin pattern by su-
perexchange, controlled by the tilt. a) Lifetime as a func-
tion of lattice depth Vz along the tilt for ∆ = 1.65U↑↓. Inset:
decay of the contrast of the |↑〉 state for 6ER≤Vz ≤ 17ER.
The lifetimes are obtained from exponential fits with an off-
set. b) Lifetime as a function of applied tilt at Vz = 12ER.
The solid lines in both subfigures are A ~ /Jxy(∆), with one fit
parameter: a) A= 7.54± 0.31 b) A= 6.54± 0.34. The dotted
line indicates the region where the single-band approxima-
tion of the Hubbard model breaks down due to resonances of
∆ =U↑↑, U↑↓, U↓↓.

gradient, a spiral spin pattern is created resulting in a
sinusoidal (cosinusoidal) variation of the z (x) projection
of the magnetization, which is a superposition of many
spin waves (magnons), and is therefore not an eigenstate.
The spiral has a pitch of 11.5µm, and about two periods
fit within the cloud. We measure the relaxation of the
spiral by imaging the decaying contrast of the real-space
density distribution of |↑〉 atoms on a CCD camera (with
4µm resolution) in the presence of a tilt ∆ = 1.65U .

We first show that the tilt does not inhibit superex-
change. To simplify the interpretation, we pick a mag-
netic field of 848.1014 Gauss at which Jz = 0 and the
dynamics are solely determined by Jxy = J from Eq. (1)
with U =U↑↓. The inset in Fig. 3a shows the decay of the
contrast at several lattice depths, which collapse onto a
single curve when the time is rescaled by ~/Jxy. This con-
firms, over a range of more than two orders of magnitude
(0.015 kHz< Jxy/~< 2.68 kHz), that the spin relaxation
is driven by superexchange. We note that the contrast de-
cays to a long-lived offset, which is larger at higher tem-
peratures probably due to the presence of holes. Also, the
offset in the spin-density modulation is smaller than the
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observed offset in the contrast since our imaging method
enhances small contrasts. The dependence of the relax-
ation time and the offset on parameters of the system,
such as the anisotropy of the Heisenberg model, the pitch
of the spiral and temperature will be addressed in a fu-
ture study.

We now demonstrate the modification of the superex-
change rate with tilt. In general, changing the strength of
the tilt also changes the ratio Jz/Jxy, which determines
the nature of the dynamics and the ground state. For ex-
ample, when ∆>U , the sign of the Heisenberg parame-
ters can be flipped (see Eqs. S6-S7 in [28]), making it pos-
sible to go between ferromagnetic and antiferromagnetic
coupling. Here we pick a magnetic field of 857.0052 Gauss
at which U↑↑ =−U↓↓ so that Jz/Jxy =− 1 is constant as
a function of tilt. Then, varying the tilt only changes
the speed of the dynamics and not the nature of the
Hamiltonian. Fig. 3b shows that the relaxation times
can be tuned by the tilt by an order of magnitude
(0.067 kHz< Jxy/~< 0.605 kHz).

(iv) Freezing in defects. A direct consequence of the
absence of first-order tunneling in a tilted MI is that
defects, which normally propagate at a rate ∼ t/~, are
frozen in. Here we illustrate the different effects of mobile
and immobile holes and doublons on the spin transport
of a single |↑〉 atom in a chain of |↓〉 atoms. We nu-
merically simulate the evolution of the two-component
Bose-Hubbard model (see [28]) for three inital states af-
ter tunneling is suddenly switched on. When there are no
defects (Fig. 4a,d), the dynamics are the same with and
without the tilt. The time evolution of spin |↑〉 shows co-
herent ballistic expansion of the wavefront with a charac-
teristic checkerboard pattern [38], akin to the dynamics
of a single particle in a non-tilted lattice [26]. The effect
of mobile holes (Fig. 4b) is to displace the particles with-
out impeding the overall dynamics significantly, which
was also observed for antiferromagnetic chains [39]. Some
coherent oscillations appear blurred and are restored by
the tilt. In the tilted case, the holes act as domain walls,
confining the dynamics to a shorter chain (Fig. 4e).

The effect of doublons is more subtle. Compared to
holes, the presence of |↓↓〉 doublons enables the forma-
tion of an |↑↓〉 doublon, so that the |↑〉 spin can prop-
agate at t/~. Note that due to Bose enhancement, an
|↑↓〉 doublon quickly turns into a |↓↓〉 doublon. Fig. 4c
shows that the |↑〉 spin is localized near the original po-
sition by collisions with |↓↓〉 doublons, which we suspect
is due to destructive interference of all paths. With the
tilt, doublons are pinned and act as reflective barriers.
The superexchange rate for spin |↑〉 to become part of a
doublon is J2 = 2t2 [−2/∆ + 2/(2U↑↓ + ∆)], which is dif-
ferent for ±∆ and leads to the left-right asymmetry in
Fig. 4f. The effects of fixed and mobile defects in higher
dimensions will be somewhat different, but overall, mo-
bile defects can have a significant effect on spin dynamics,
while immobile defects act, to a good approximation, as

a) b) c)

d) e) f)

FIG. 4. Effect of holes and doublons on the superexchange
dynamics of an |↑〉 spin in a chain of |↓〉 spins. Plotted is the
probability distribution of the |↑〉 spin as a function of time for
three initial states without (top row) and with (bottom row)
the tilt: no defects (left), two holes (middle), two doublons
(right). Here ∆ = 1.25U , U is spin independent, and the pa-
rameters are chosen so that the superexchange rate J/~ is the
same as in the case with no tilt.

domain walls or static impurities. This has implications
not only for dynamics, but also for adiabatic state prepa-
ration where the tilt prevents defects from increasing the
final entropy (see Fig. S5 in [28]).

The implementation of tilts for heavier atoms, should
be less demanding since similar tilts (in units of recoil
energy) require lower laser power. Magnetic tilts are also
possible if the two spin states have the same magnetic
moment. Separation of spin and mass transport could
also be achieved with random offsets implemented with
bichromatic lattices or laser speckle, as in the studies of
Anderson localization [40, 41].

We have introduced tilted lattices as a new tool with
practical and fundamental applications. On the practi-
cal side, we have shown that it can lead to an order of
magnitude larger systems with spin-spin couplings which
are an order of magnitude faster. On the fundamental
side, the tilt can change not only the speed of superex-
change, but also the anisotropy of Heisenberg models. It
also turns t-J models with mobile holes into spin sys-
tems with pinned impurities. This can be used to cre-
ate lattices with disorder, similar in spirit to disorder in
species-dependent lattices created by pinning the second
species [42], and to study mixed-dimensional transport in
2D systems with tilt along one axis [43]. The separation
between spin and density dynamics should be useful for
future quench experiments and for improving the fidelity
of adiabatic preparation of magnetically-ordered ground
states.
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