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We show through first-principle nuclear structure calculations that the special nature of the strong
nuclear force determines highly regular patterns heretofore unrecognized in nuclei that can be tied to
an emergent approximate symmetry. This symmetry is remarkably ubiquitous and mathematically
tracks with a symplectic symmetry group. This, in turn, has important implications for understand-
ing the physics of nuclei: we find that nuclei are made of only a few equilibrium shapes, deformed
or not, with associated vibrations and rotations. It also opens the path for ab initio large-scale
modeling of open-shell intermediate-mass nuclei without the need for renormalized interactions and
effective charges.

Introduction. Exact symmetry and symmetry-
breaking phenomena play a key role in providing a better
understanding of the physics of many-particle systems,
from quarks and nuclei, to molecules and galaxies. In
atomic nuclei, exact and dominant symmetries such as
rotational invariance, parity, and charge independence
have been established. However, even when these sym-
metries are taken into account, the structure of nuclei
remains illusive and only partially understood, with no
additional symmetries immediately evident from the un-
derlying interaction between protons and neutrons.

The nuclear shell model is based on the premise that
nuclei have an underlying spherical harmonic oscilla-
tor (HO) shell structure [1], with residual interactions.
In fact, with effective interactions (renormalized in the
nuclear medium to a valence shell) and large effective
charges that are introduced to account for missing col-
lectivity, the shell model is successful at explaining many
properties of nuclei. However, it has been much less
successful at predicting the many surprises that surface,
such as the highly collective rotational states that are
described phenomenologically by the Bohr-Mottelson col-
lective model [2], as well as the recognition that the first
excited state of the doubly closed shell nucleus of 16O is
the head of a strongly deformed rotational band [3, 4].
The coexistence of states of widely differing deformation
in many nuclei is now well established [5–8] as an emer-
gent phenomenon and dramatically exposes the limita-
tions of the standard shell model.

To address this and to understand the physics of nuclei
without limitations within the interaction and approxi-
mations during the many-body nuclear simulations, we
use an ab initio framework that starts with realistic inter-
actions tied to elementary particle physics considerations
and fitted to nucleon-nucleon data. Such calculations are
now possible and are able to give converged results for

successful applications to structure and reactions of light
nuclei by the use of supercomputers [9–21], with recent
advances into the medium-mass region [22–25]. How-
ever, in ab initio calculations the complexity of the nu-
clear problem dramatically increases with the number of
particles, and when expressed in terms of billions of shell-
model basis states, the structure of a nuclear state is un-
recognizable. But expressing it in a more informative ba-
sis, the symmetry-adapted (SA) collective basis [14, 26],
leads to a major breakthrough: in this letter, we report
on the remarkable outcome from first-principle investiga-
tions up through the intermediate-mass region, namely,
the simplicity of nuclear low-lying states and the strik-
ing dominance of an associated symmetry of nuclear dy-
namics. Specifically, this is the symplectic Sp(3,R) sym-
metry, which together with its slight symmetry break-
ing is shown here to naturally emerge in atomic nuclei.
This exposes for the first time the fundamental role of
the Sp(3,R) symmetry and establishes it as a remark-
ably good symmetry of the strong nuclear force, in the
low-energy regime.

This emergent symplectic symmetry provides impor-
tant new information through its link to nuclear collec-
tivity: we show here that nuclei are made of only a few
equilibrium shapes, with associated vibrations and rota-
tions. This pioneers ab initio descriptions that capitalize
on the symplectic symmetry of open-shell intermediate-
mass nuclei without the use of effective charges, with an-
ticipated predictions, e.g., for short-lived isotopes with
large deformation or cluster substructure along various
nucleosynthesis pathways, especially where experimental
measurements are incomplete or not available.

It is known that SU(3), a subgroup of Sp(3,R), is the
symmetry group of the spherical harmonic oscillator that
underpins the shell model [1] and the valence-shell SU(3)
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FIG. 1. (a) The symplectic group Sp(3,R) consists of all
particle-independent linear canonical transformations ( A B

C D )
of the single-particle phase-space observables ~ri (position) and
~pi (momentum) that preserve the Heisenberg commutation re-
lations [rαi, pα′j ] = i~δαα′δij , α, α

′ = x, y, z [27]. (b) In the
shell model, the basis configurations are multiples of sym-
plectic excitations, generated by r2 and Q. A key feature is
that a single-particle Sp(3,R) irreducible representation spans
all positive-(or negative-)parity states for a particle in a 3D
spherical or deformed harmonic oscillator.

Elliott model [28], which naturally describes rotations of
a deformed nucleus without the need for breaking rota-
tional symmetry. The key role of deformation in nuclei,
along with the coexistence of low-lying states in a single
nucleus with different quadrupole moments [5], makes the
quadrupole moment 〈Q〉 a dominant fundamental prop-
erty of the nucleus. Together with the monopole moment〈
r2
〉

or “size” of the nucleus, it establishes the energy
scale of the nuclear problem. Indeed, the nucleus size
and shape underpin the essence of symplectic Sp(3,R)
symmetry (see also Fig. 1 and supplement). Not sur-
prisingly, Sp(3,R), the underlying symmetry of the sym-
plectic rotor model [29, 30], has been found to play a key
role across the nuclear chart – from the lightest systems
[4, 31], through intermediate-mass nuclei [14, 32, 33], up
to strongly deformed nuclei of the rare-earth and ac-
tinide regions [30, 34–36]. The results agree with ex-
perimental evidence that supports enhanced deformation
and clustering in nuclei, as suggested by energy spec-
tra, electric monopole and quadrupole transitions, radii
and quadrupole moments [5, 37, 38]. While these earlier
models have successfully explained the observed collec-
tive patterns, they have assumed symmetry-based ap-
proximations. Only now, the present outcomes not only
explain but also predict the emergence of nuclear col-
lectivity across nuclei, even in close-to-spherical nuclear
states without any recognizable rotational properties, as
revealed within an ab initio framework without a priori
symmetry assumptions, the symmetry-adapted no-core
shell model (SA-NCSM) [14, 26, 39] with chiral effective
field theory interactions.

SA-NCSM with Sp(3,R)-adapted basis. The SA-
NCSM is based on the shell-model theory [9, 40] that
solves the many-body Schrödinger equation for A parti-
cles and, in its most general form, is an exact many-body

“configuration interaction” method. The intrinsic non-
relativistic nuclear Hamiltonian includes the relative ki-
netic energy, nucleon-nucleon (NN) and, possibly, three-
nucleon (3N) interactions, typically derived in the chiral
effective field theory [41–44], along with the Coulomb
interaction between the protons. We have adopted vari-
ous realistic interactions without renormalization in nu-
clear medium, with results illustrated here for the Entem-
Machleidt (EM) N3LO [43] and NNLOopt [45] chiral po-
tentials. We neglect explicit 3N interactions, since they
are known to be hierarchically smaller than NN.

New developments here focus on constructing the
Sp(3,R)-adapted basis (for computer codes, see [46]).
This basis is built from the SU(3)-adapted basis reviewed
in Ref. [14]. Briefly, each SU(3)-adapted basis state
has definite proton (neutron) Sp(n) and total S intrinsic
spins, along with deformation-related (λµ) SU(3) quan-
tum numbers and total number of HO quanta N ≤ Nmax

(Nmax is the same as the cutoff used in the conventional
NCSM). The difficulty in constructing the symplectic ba-
sis stems from the fact that there are no known Sp(3,R)
coupling/recoupling coefficients, and one has to resort to
innovative techniques. Here, we adopt the SU(3) scalar

operator {B†×B}(0 0)
L=0M=0, where the Sp(3,R) generator

B† moves a particle two shells up [arrows in Fig. 1(b)].
This operator is computed for a set of basis states with
the same N(λµ)SpSnS; eigenvectors of this matrix re-
alize Sp(3,R)-adapted basis states and are used to con-
struct the Hamiltonian in the new symplectic basis; the
known eigenvalues are used to assign each eigenvector to
a specific symplectic irreducible representation (irrep).
While this procedure is computationally intensive, espe-
cially for higher-N sets of large dimensionality, resulting
Hamiltonian matrix is drastically small in size and its
eigensolutions, the nuclear energies and states, can be
calculated without the need for supercomputers.
Emergent symmetry and dominant nuclear fea-
tures from first principles. We report on the remark-
able outcome, as unveiled from first-principle calculations
below the calcium region, that nuclei exhibit relatively
simple physics. We now understand that a low-lying nu-
clear state is predominantly composed of a few equilib-
rium shapes that vibrate and rotate, with each shape
characterized by a single symplectic irrep.

To illustrate this, we consider the physics of 20Ne (Fig.
2) and the contribution of a single symplectic irrep to
its low-lying states, Fig. 2 (a). Indeed, a single sym-
plectic irrep can provide insight into the nuclear dynam-
ics: as shown earlier [29, 30, 36, 47] and discussed in the
next paragraph, all configurations within a symplectic
irrep preserve an equilibrium shape (or simply “shape”)
and realize its rotations, vibrations, and spatial orienta-
tions, implying that the 20Ne ab initio wave-functions for
Jπ = 0+

gs, 2
+, . . . , 8+ shown in Fig. 2 (a) indeed exhibit a

predominance of a single shape that vibrates and rotates
[see also, Fig. 2 (b), largest circle].
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FIG. 2. (a) Excitation energies (horizontal axis) of the ground-state (gs) rotational band (Jπ = 0+
gs, 2

+, 4+, 6+, and 8+) and
excited 0+ states in 20Ne, shown together with the contribution to each state (vertical axis) of the single shape that dominates
the ground state. According to this, states are grouped and schematically illustrated by “classical” shapes, vibrations, and
rotations, where the ab initio one-body density profile in the body-fixed frame is shown for 0+. (b) Deformation distribution
of the equilibrium shapes that make up a state with contributions given by the area of the circles, specified by the average
deformation β and triaxiality angle γ. Results are for ab initio SA-NCSM calculations with NNLOopt for an SU(3) basis that
yields a fast convergence of the gs rms radius (model space of 11 HO shells with ~Ω=15 MeV inter-shell distance).

To understand the relation of the symplectic symme-
try to the shapes dynamics, we note that the quadrupole
moment Q does not mix irreps. Hence, an average
quadrupole ellipsoid can be assigned to each symplectic
irrep. This is best understood in the limit of a valence
shell, where the symplectic basis recovers the SU(3)-
adapted basis of the Elliott model: a given many-particle
SU(3) state can be associated with an average shape us-
ing the familiar shape parameters, deformation β and tri-
axiality γ, through the expectation values 〈Q · Q〉 ∼ β2

and 〈[Q × Q]2 · Q〉 ∼ β3 cos 3γ [48, 49] [note that β
and γ, while providing a physical meaning to (λµ), de-
scribe average ellipsoids that lack details, e.g., as evi-
dent in the one-body densities of Fig. 2]. And since
L is a good quantum number of each SU(3) state, it
naturally informs about the rotations of this ellipsoid.
Finally, the associated vibrations are described by the
symplectic (particle-hole) excitations, here referred to as
“dynamical shapes”. This can be illustrated for a single
spherical shape, where the symplectic excitations realize
the microscopic counterpart of the surface vibrations of
the Bohr-Mottelson collective model [47, 50]. As further
shown in the β-γ plots of Fig. 2(a), the set of excited 0+

states with nonnegligible contribution of the 1p-1h vibra-
tions of the ground-state shape describes a fragmented
giant monopole resonance (breathing mode) with a cen-
troid around 29 MeV and a typical deformation content
spread out to large β values due to vibrations [51].

The Sp(3,R)-adapted basis is constructed for various
nuclei, pointing to unexpectedly ubiquitous symplectic
symmetry, with the illustrative examples for the odd-odd

6Li, 8He (considered to be spherical with a halo struc-
ture), and the intermediate-mass 20Ne (Fig. 3). The out-
come provides further evidence that nuclei are predomi-
nantly comprised (typically in excess of 70-80%) of only
a few shapes, often a single shape (a single symplectic
irrep) as for 6Li, 8B, 8Be, 16O, and 20Ne, or two shapes,
e.g., for 8He and 12C (see [14] for 8B and 8Be based on
SU(3) analysis, and [26] for 12C and 16O). Hence, the
ground state of 6Li and 20Ne (16O) is found to exhibit
a prolate (spherical) shape, while an oblate shape dom-
inates in the case of 8He. The same features, perhaps
even more pronounced, are anticipated across the region
of heavy nuclei where the symplectic symmetry has been
originally adopted to explain deformation-related nuclear
properties [30, 34–36].

Besides the predominant irrep(s), there is a manage-
able number of symplectic irreps, each of which con-
tributes at a level that is typically at least an order
of magnitude smaller, as shown in Fig. 3(a)-(c). Fur-
thermore, the outcome implies that the richness of the
low-lying excitation spectra naturally emerges from these
shapes through their rotations, corroborating earlier re-
sults [52–54]. Indeed, practically the same symplectic
content observed for the low-lying states in 6Li, Fig. 3(a),
and for those in 20Ne, Fig. 3(c), is a rigorous signature of
rotations of a shape and can be used to identify members
of a rotational band. A notable outcome is that excita-
tion energies and transition rates for a few symplectic ir-
reps closely reproduce the experimental data, Fig. 3(d),
and remain stable as the number of symplectic irreps is
varied. Extrapolations to the infinite number of shells
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FIG. 3. (a)-(c) Symplectic Sp(3,R) irreps that make up the rotational band states of 6Li, 8He, and 20Ne (in a close agreement
with the results of Fig. 2); each irrep is specified by its equilibrium shape, labeled by β and the corresponding SU(3) labels
(λµ) together with total spin S. Insets: the same irreps but without the predominant contribution, together with the β-γ plot
for the ground state. (d) Observables for 6Li and 20Ne calculated in the ab initio SA-NCSM with Sp(3,R) basis using only
a small number (specified in the x-axis labels) dominant symplectic irreps including the most dominant one, as compared to
experiment (“Expt.”); dimensions of the largest model spaces used are also shown. Energies (with errors ∼ 100 keV) and B(E2)
transition strengths (in W.u.) are reported for extrapolations to infinitely many shells of converging results across variations
in the model space size and resolution (see supplement). Model-space dimensions are shown above each case; for comparison,
the corresponding NCSM dimension for Jπ = 0+, 2+, 4+ in 20Ne in 11 HO shells is 3.8 × 1010. Results (a)-(c) and energies in
(d) labeled as “All” are reported for ab initio SA-NCSM calculations for an SU(3) basis that yields a fast convergence of the
gs rms radius: complete (selected) model space of 14 (11) HO major shells for 6Li and 8He (20Ne) with inter-shell distance of
(a)-(b) 20 MeV and (c)-(d) 15 MeV.

use the Shanks transformation and are based on the fast
convergence we find for observables [55, 56].

Radii and E2 transitions are determined by Sp(3,R)
generators (r2 and Q, respectively) that do not mix sym-
plectic irreps. The predominance of a single symplectic
irrep reveals the remarkable result that the largest frac-
tion of these observables, and hence nuclear size and col-
lectivity, necessarily emerges within this symplectic ir-
rep, Fig. 3(d). We note that the underprediction of
the E2 transitions agrees with rms radii estimates, as
both observables exhibit almost perfect correlations (see
supplement). This also implies that the inclusion of 3N
forces, currently work in progress, will have an effect on
the E2 estimates, albeit to a small degree: e.g., rms radii
decrease by about 3% for light nuclei with EM-N3LO
NN+3N [57]; further, the extrapolated rms matter radii
for NNLOopt NN deviate from experiment only by 2% for
6Li and 6.7% for 20Ne (see also [20]). Indeed, as shown in

Figs. 2 and 3, the symmetry patterns for the EM-N3LO,
whose complementary 3N forces give non-negligible con-
tributions to binding energies and radii, exhibit a strik-
ingly similar behavior to the ones for NNLOopt that min-
imizes such 3N contribution in 3H and 3,4He [45].

The outcome is not sensitive to the parameters of the
basis, ~Ω and Nmax. These model parameters can be
related to Leff , the infrared IR cutoff, and aeff , the ultra-
violet UV cutoff Λeff = 1/aeff [58], which can be under-
stood as the effective size of the model space (“box”) in
which the nucleus resides and its grid size (resolution),
respectively. Indeed, the symplectic content of a nucleus
is found to be stable against variations in the box size
or resolution (Fig. 4). This has an important implica-
tion: complete SA-NCSM calculations are performed in
smaller box sizes and/or low resolution to identify the
nonnegligible symplectic irreps, while the model space is
then augmented by extending these irreps to high (other-
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FIG. 4. Symplectic Sp(3,R) irreps, labeled by (λµ)S, that
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as the box size increases for the same resolution. No new
dominant equilibrium shapes are observed as the box size or
grid resolution increases.

wise inaccessible) HO major shells to accommodate col-
lective and spatially enhanced modes.

In short, this work shows that nuclei up through the
intermediate-mass region and their low-energy excita-
tions display relatively simple emergent physics that is
collective in nature and tracks with an approximate sym-
plectic symmetry heretofore gone unrecognized in the
strong nuclear force. This work may have potential im-
pacts, in general, to studies of strongly interacting quan-
tum systems, e.g., incorporating emergent symmetries
into tensor network quantum states.
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