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Under extensional strain, fiber networks can exhibit an anomalously large and nonlinear Poisson effect ac-
companied by a dramatic transverse contraction and volume reduction for applied strains as small as a few
percent. We demonstrate that this phenomenon is controlled by a collective mechanical phase transition that
occurs at a critical uniaxial strain that depends on network connectivity. This transition is punctuated by an
anomalous peak in the apparent Poisson’s ratio and other critical signatures such as diverging nonaffine strain
fluctuations.

When an elastic body is subjected to an infinitesimal strain
ε‖ along one axis, the corresponding strain ε⊥ in the trans-
verse direction(s) defines Poisson’s ratio ν = −ε⊥/ε‖ [1, 2].
Although this ratio is constrained to the range ν ∈ [−1, 1/2]
for isotropic materials in 3D, there have been numerous re-
cent reports of anomalously large apparent Poisson’s ratios
exceeding 1/2 in a variety of fibrous materials at small strain,
including felt [3] and networks of collagen [4–8] and fibrin
[7, 9]. This corresponds to an anomalous reduction in volume
under extension, in apparent stark contrast to the linear be-
havior of all isotropic materials, which strictly maintain or in-
crease their volume under infinitesimal extension. This is even
true of auxetic materials with ν < 0 [10–13]. A volume re-
duction under uniaxial extension can have dramatic effects in
living tissue, such as the development of highly aligned, stiff-
ened network regions with reduced porosity between contrac-
tile cells in the extracellular matrix [4, 8, 14, 15]. Although
it has been argued that this effect is related to stiffening and
other nonlinear phenomena in such networks [3, 8, 16], it re-
mains unclear to what extent this anomaly is controlled by
network architecture and filament properties.

Here, we show that the anomalous Poisson’s ratio of fiber
networks is governed by a mechanical phase transition in-
duced by applied axial strain. Using simulations of disordered
networks in 2D and 3D, we show that this phenomenon is crit-
ical in nature, with diverging strain fluctuations in the vicinity
of the transition and a corresponding maximum of the appar-
ent Poisson’s ratio. Connecting with recent studies of mechan-
ical criticality in athermal networks [17–22], we demonstrate
that this maximum occurs at a connectivity-controlled strain
corresponding to a macroscopic crossover between distinct
mechanical regimes, with large-scale, collective network re-
arrangements as a branched, system-spanning network of ten-
sile force chains develops. Our results highlight the influence
of collective properties on the nonlinear mechanics of ather-
mal networks and suggest that controlling connectivity could
enable the design of tailored elastic anomalies in engineered
fiber networks.

Recent work has demonstrated that the strain-stiffening ef-
fect in crosslinked networks of stiff athermal semiflexible
biopolymers, such as collagen, which can be modeled as
elastic rods with bending modulus κ and stretching mod-
ulus µ, can be understood as a mechanical phase transi-
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FIG. 1. (a) Under applied extensional strain ε‖ (red arrow) with free
transverse strains, subisostatic (z < zc) athermal fiber networks tran-
sition from a soft, bending-dominated regime (H ∝ κ, floppy in the
limit of κ → 0) to a stiff, stretching-dominated regime (H ∝ µ)
at a critical applied strain ε‖,c (dotted line) that increases with de-
creasing z. As z → zc , ε‖,c → 0. (b) The incremental Poisson’s
ratio ν̃ = −∂ε⊥/∂ε‖ exhibits a peak at the critical strain, indicated
by the dotted line. The black curve corresponds to a 2D packing-
derived network with κ̃ = 10−5 and z = 3.2. Network configurations
corresponding to the numbered circles are shown in (c). Here, the
black box represents the deformation of the initially square periodic
boundaries. Bonds under greater tension f than the average, 〈 f 〉, are
colored blue with thickness proportional to f /〈 f 〉.

tion between a bending-dominated regime and a stretching-
dominated regime at an applied shear or extensional strain
governed by the average network connectivity z [18–20, 23].
Despite being athermal, such networks exhibit classic signa-
tures of criticality near this transition, including power-law
scaling of the elastic moduli with strain and system-size-
dependent nonaffine strain fluctuations indicative of a diverg-
ing correlation length [18, 20]. In the limit of κ → 0, stiffen-
ing corresponds to the rearrangement of the network to form
a marginally stable, highly heterogenous network of branched
force chains [24, 25] similar to the force networks observed in
marginal jammed packings under compressive or shear strain
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[26–28]. Prior work has considered this rigidity transition in
networks under applied simple shear [18, 20–22] or bulk strain
[21–23], with quantitative agreement between shear experi-
ments on collagen and simulations [29].

We find that an analogous collective mechanical phase
transition controls the mechanics of networks under uniax-
ial strain with free orthogonal strains. In athermal semi-
flexible polymer networks, strain-stiffening and the nonlin-
ear Poisson effect occur at a critical extensional strain con-
trolled by network connectivity, corresponding to a transi-
tion from a bending-dominated regime to one dominated by
stretching. The expected phase diagram in connectivity-strain
space is sketched in Fig. 1a. As applied strain drives a network
to approach and cross the critical strain boundary, the net-
work’s mechanics become stretching-dominated and the re-
sultant nonlinear strain-stiffening induces dramatic transverse
contraction coinciding with a peak in the incremental Pois-
son’s ratio ν̃ (see Fig. 1b). Concurrent with this transition,
the system exhibits nonaffine strain fluctuations which grow
by orders of magnitude as criticality is approached (either by
decreasing κ or approaching the critical strain). We demon-
strate that this phenomenon occurs irrespective of the details
of the underlying network structure, consistent with past ob-
servations of networks under simple shear [18, 25]. Our re-
sults suggest that the dramatic nonlinear Poisson effect ob-
served in collagen and fibrin gels is macroscopic evidence of
this critical rigidity transition.

Models—We consider 2D and 3D disordered networks
comprising interconnected 1D Hookean springs with stretch-
ing modulus µ, with additional bending interactions with
modulus κ between adjacent bonds. To explore the influence
of network structure on the transition, we test a variety of net-
work geometries, including Mikado networks [30], 2D and 3D
jammed packing-derived (PD) networks [25], 3D Voronoi net-
works [16], and 3D random geometric graph (RGG) networks
[31, 32]. The network HamiltonianH = Hs +Hb consists of
a stretching contribution,

Hs =
µ

2

∑
i j

(
`i j − `i j,0

)2

`i j,0
, (1)

in which the sum is taken over connected node pairs i j, `i j is
the length of the bond connecting nodes i and j, and `i j,0 is the
corresponding rest length, as well as a bending contribution,

Hb =
κ

2

∑
i jk

(
θi jk − θi jk,0

)2

`i jk,0
. (2)

in which the sum is taken over connected node triplets i j k,
θi jk is the angle between bonds i j and j k, θi jk,0 is the cor-
responding rest angle, and `i jk,0 = (`i j,0 + `jk,0)/2. For
Mikado networks, which we designate to have freely hing-
ing crosslinks, the sum in Eq. 2 is taken only over consecutive
node triplets along initially collinear bonds. Following prior
work, we set µ = 1 and vary the dimensionless bending rigid-
ity κ̃ = κ/(µ`2

c) [25, 33], where `c is the average bond length.

Since the volume fractions of biopolymer gels are typically
1% or less [29, 34], we do not include excluded volume effects
in the results presented below, although we examine their ef-
fects in Supplemental Material [32]. All network models uti-
lize generalized Lees-Edwards periodic boundary conditions
[25, 35], which specify that the displacement vectors between
each network node and its periodic images transform accord-
ing to the deformation gradient tensor Λ. We consider purely
extensional strain, with Λii = 1 + εi , where εi is the strain
along the i-axis relative to the initial configuration. Whereas
the primary results of this paper utilize periodic boundaries,
we have also performed simulations of non-periodic networks
with fixed upper and lower boundaries. We find that fixed
boundaries of width equal to or greater than the sample length
can suppress the apparent Poisson’s ratio [32]. The normal
stress components σii are computed as σii = (∂H/∂εi)/V , in
which V is the system’s volume. Unless otherwise stated, all
curves correspond to an average over 15 samples.

To measure the nonlinear Poisson effect, we apply quasi-
static longitudinal extensional strain ε‖ ≡ ε1 in small in-
crements δε‖ = ε‖,n − ε‖,n−1 and, at a given strain, first
allow the system to reach mechanical equilibrium by mini-
mizing the network’s Hamiltonian using the L-BFGS algo-
rithm [36]. After each extensional strain step, we simulate
free transverse boundaries by incrementally varying the trans-
verse strain(s) ε2 (and ε3 in 3D) in order to reduce the corre-
sponding transverse normal stress component(s) to zero, i.e.
|∂H/∂εi | ≈ 0. In 2D the single transverse strain is ε⊥ ≡ ε2,
whereas in 3D the stresses along the two transverse axes are
relaxed independently and we define the transverse strain, for
the purposes of computing the incremental Poisson’s ratio,
as ε⊥ ≡ (ε2 + ε3)/2. For orientationally isotropic network
models, ε2 and ε3 are equivalent in the limit of large sys-
tem size. The differential Young’s modulus Ẽ is computed
as Ẽ = ∂σ‖/∂ε‖ .

Results—Subisostatic athermal networks undergo a transi-
tion from a bending-dominated regime to a stiff stretching-
dominated regime at a critical applied shear or extensional
strain [37, 38]. Recent work showed that athermal networks
under extensional strain with free transverse strains, which
we consider in this work, undergo a similar transition from
a bending-dominated to stretching-dominated regime corre-
sponding with strain-stiffening [16]. To examine the influ-
ence of bending rigidity on this transition, we first consider 2D
packing-derived networks with fixed connectivity z = 3.2 <
zc and varying reduced bending rigidity κ̃. In Fig. 2a, we
plot the relaxed transverse strain ε⊥ as a function of applied
longitudinal extensional strain ε‖ , with the corresponding in-
cremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ shown in Fig. 2b.
The fraction of the total network energy due to bending in-
teractions Hb/H as a function of strain is shown in Supple-
mental Material. Networks with high κ̃ deform approximately
linearly up to relatively large applied strains, with minimal
strain-dependence of ν̃. In contrast, networks with low κ̃ ex-
hibit similar linear deformation (with ν̃ < 1) in the limit of
small applied strain, but under increasing applied strain these
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undergo a transition to a much stiffer stretching-dominated
regime, resulting in significant transverse contraction and thus
a very large apparent Poisson’s ratio. At larger strains, within
the stretching-dominated regime, the networks again deform
approximately linearly with an incremental Poisson’s ratio
ν̃ < 1. The transition occurs at a critical applied extension
εc , which we define as the strain corresponding to the inflec-
tion point in the ε⊥ vs. ε‖ curve as κ → 0. By definition, this
corresponds to a peak in ν̃, which grows with decreasing κ̃.

FIG. 2. (a) Relaxed transverse strain ε⊥ as a function of applied ex-
tensional strain ε‖ for 2D packing-derived networks with z = 3.2
and varying κ̃. For large κ̃, networks deform linearly up to relatively
large strains. The gray dashed line corresponds to constant volume,
∆V ≡ V − V0 = 0. In the limit of low κ̃, networks deform linearly
at low strains, with a linear Poisson’s ratio less than 1, but exhibit a
significant increase in transverse contraction at a critical strain ε‖,c ,
indicated by the dotted black line. (b) The magnitude of the incre-
mental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ peaks at the critical strain and
increases with decreasing κ̃. (c) At the critical strain, we observe
a corresponding peak in the nonaffine strain fluctuations δΓ which
increases in magnitude as κ̃ is decreased.

This unusual nonlinear Poisson effect results from the
asymmetric nonlinear mechanics of these networks, which
stiffen dramatically under extensional strain but remain soft
under compression [3, 4]. Compressing a semiflexible poly-
mer network induces normal stresses proportional to the bend-
ing rigidity κ of the constituent polymers, whereas sufficient
extension induces normal stresses proportional to the poly-
mer stretching modulus µ [37]. An athermal network under
uniaxial extension with fixed transverse strains will exhibit an

increase in the magnitude of its normal stresses from σii ∝ κ
to σii ∝ µ at the critical strain, both along the strain axis
(σ‖) and the transverse axes (σ⊥). Relaxing the transverse
boundaries to satisfy σ⊥ = 0 requires contraction along the
transverse axes, which necessarily reduces the stiff stretching-
induced contributions (∝ µ) until these are balanced by softer,
compression-induced contributions (∝ κ). The amount of
transverse contraction in the vicinity of the critical strain thus
increases with µ/κ.

Past work showed that athermal networks under applied
shear strain exhibit diverging nonaffine strain fluctuations at
the critical strain, in the limit of κ̃ → 0, indicative of a diverg-
ing correlation length [18, 20, 39]. Concurrent with the strain-
driven transition in this work, we observe similarly large in-
ternal strain fluctuations. We use an analogous measure of the
strain fluctuations for the deformation gradient tensor Λ de-
fined above. For the nth strain step, the incremental applied
extensional strain δε‖ = ε‖,n − ε‖,n−1 and relaxation of the
transverse strain(s) transforms the deformation gradient ten-
sor from Λn−1 to Λn. We compute the resulting differential
nonaffinity δΓ as

δΓ =
1

`2
c

(
δε‖

)2

〈

δui − δuaff
i



2〉
(3)

in which the average is taken over all nodes i, `c is the initial
average bond length, δui = ui,n −ui,n−1 is the actual displace-
ment of node i after the extensional strain step and transverse
strain relaxation, and δuaff

i is the displacement of node i cor-
responding to an affine transformation from the previous con-
figuration at strain state Λn−1 to the new strain state Λn. Con-
sistent with prior work examining networks under shear strain
[20], we find that increasing κ̃ results in increasingly affine
deformation (decreasing δΓ), whereas in the low-κ̃ limit we
observe a peak in δΓ at the critical strain which grows with
decreasing κ̃ (see Fig. 2c).

For athermal subisostatic networks under applied simple
shear strain, the critical strain is governed by the average net-
work connectivity z [18, 39, 40], with the critical strain de-
creasing to zero as z approaches the Maxwell isostatic value
zc = 2d , where d is the dimensionality [41]. As sketched in
our hypothesized phase diagram (see Fig. 1a), we expect z to
similarly control the critical strain for networks under exten-
sional strain with free orthogonal strains. In Fig. 3, we plot
the incremental Poisson ratio ν̃ as a function of ε‖ for several
network geometries in 2D and 3D with varying z. While the
precise location of the critical strain for a given connectivity
is sensitive to the choice of network structure, we find that
all networks tested exhibit behavior that is qualitatively con-
sistent with the proposed phase diagram, with a critical strain
ε‖,c that decreases as z → zc .

We also explicitly map out a phase diagram for packing-
derived networks in 2D. In Fig. 4a, we plot both the incre-
mental Poisson’s ratio ν̃ and differential nonaffinity δΓ for 2D
PD networks as a function of applied strain over a range of z
values up to the 2D isostatic point, zc = 4. Both quantities be-
come maximal at a critical strain that approaches 0 as z → zc .
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FIG. 3. Incremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ as a function of
applied extensional strain ε‖ for various 2D and 3D network struc-
tures, as labeled in the top right of each panel, with varying connec-
tivity z. In all networks, the critical strain ε‖,c , corresponding to the
peak in ν̃, increases with decreasing z.

Near zc , the critical strain grows as ε‖,c ∝ zc − z, consistent
with prior results [23, 32, 40]. We plot the corresponding dif-
ferential Young’s modulus Ẽ = ∂σ‖/∂ε‖ as a function of z
and ε‖ in Fig. 4b, demonstrating that the transition of the net-
work from the soft, bending-dominated regime (Ẽ ∝ κ) to the
stiffer, stretching-dominated regime (Ẽ ∝ µ) coincides with
peaks in both the incremental Poisson’s ratio and the differ-
ential nonaffinity (Fig. 4a). Further, we find that the differen-
tial Young’s modulus scales as a power law Ẽ ∝

��ε‖ − ε‖,c �� f
above the critical strain [32].

Discussion—We have demonstrated that the nonlinear
Poisson effect observed in subisostatic networks is a direct
consequence of a strain-driven collective mechanical phase
transition. Whereas the large apparent Poisson’s ratios ob-
served in such networks at finite strains can be qualitatively
understood as resulting from their highly asymmetric mechan-
ical properties, i.e. that they stiffen dramatically under finite
extension but remain comparatively soft under compression,
as discussed conceptually in Refs. [3, 4], we have demon-
strated that this asymmetry becomes maximized at a critical
phase boundary controlled by strain and connectivity. At this
boundary, a network exhibits diverging strain fluctuations as
it collectively rearranges to transition from a soft, bending-
dominated regime to a stiff, stretching-dominated regime. In
the latter, marginally stable state, the mechanics become dom-
inated by an underlying branched network of bonds under ten-
sion, which generates tensile transverse normal stresses that
drive the lateral contraction of the network against the weaker
compression-induced stresses. This results in an apparent
Poisson’s ratio that exceeds 1/2 at the phase transition and
grows as a function of the relative magnitude the stiff and soft
contributions, µ/κ. Whereas we have focused on the T = 0
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FIG. 4. (a) Incremental Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ as a function
of applied extensional strain ε‖ and average connectivity z for 2D
packing-derived networks with W = 100 and κ̃ = 10−5. Inset: For
a given connectivity z, the differential nonaffinity δΓ exhibits a peak
coinciding with the peak in the incremental Poisson ratio ν̃. (b) Dif-
ferential Young’s modulus Ẽ = ∂σ‖/∂ε‖ for the same networks as
in (a). Inset: Corresponding stretching energy fractionHs/H .

limit with an eye towards networks such as collagen, we note
that finite temperature can stabilize otherwise floppy networks
[42, 43] and would be expected to reduce the peak in the dif-
ferential Poisson’s ratio in a manner similar to finite κ.

Using simulations of a variety of network architectures in
2D and 3D, we have shown that this effect is robustly con-
trolled by connectivity and occurs independently of the pre-
cise underlying network structure. Further, we have demon-
strated critical scaling of the differential Young’s modulus
[32] similar to what has been shown for the shear modulus
of collagen networks [18]. This suggests that experimental
measurements of the differential Young’s modulus of colla-
gen gels under uniaxial strain should quantitatively fit the pre-
dicted scaling form, with a given sample exhibiting a peak in
the incremental Poisson’s ratio at the transition point. Further
work could enable prediction of the local stiffness in the extra-
cellular matrix based on the observed local strain asymmetry.
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