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NiNb2O6 is an almost ideal realization of a 1D spin-1 ferromagnetic Heisenberg chain compound
with weak unidirectional anisotropy. Using time-domain THz spectroscopy, we measure the low-
energy electrodynamic response of NiNb2O6 as a function of temperature and external magnetic
field. At low temperatures, we find a magnon-like spin-excitation, which corresponds to the lowest
energy excitation at q ∼ 0. At higher temperatures, we unexpectedly observe a temperature-
dependent renormalization of the spin-excitation energy, which has a strong dependence on field
direction. Using theoretical arguments, exact diagonalizations and finite temperature dynamical
Lanczos calculations, we construct a picture of magnon-magnon interactions that naturally explains
the observed renormalization. We show how magnetic field strength and direction may be used to
directly tune the sign of the magnon-magnon interaction. This unique scenario is a consequence of
the spin-1 nature and has no analog in the more widely studied spin-1/2 systems.

Since the early work of Ising (1925) [1] and Bethe
(1931) [2], magnetism in 1D spin chains has been the
subject of continuous theoretical [3–13] and experimen-
tal interest [14–22]. Due to reduced dimensionality, mag-
netic order is susceptible to fluctuations which can cause
the system to exhibit interesting quantum and classical
effects [23]. Examples include novel quantum phase tran-
sitions [17, 24], fractional excitations [25, 26], entangle-
ment [27] and spin-charge separation [28, 29]. Moreover,
the simplicity of 1D systems often makes the theoreti-
cal formulation tractable and allows a direct comparison
with experiment.

Spin excitations in 1D chains have been studied for
both ferromagnetic (FM) and antiferromagnetic (AFM)
exchange interactions [4, 15, 18, 30]. For an isolated FM
spin-1/2 chain with dominant Ising interactions, the ex-
citations are domain walls. Each spin flip forms two do-
main walls (‘kinks’ or ‘spinons’) [31, 32]. These frac-
tional excitations can be understood analytically and
have been studied extensively in a variety of 1D spin-1/2
systems [17–20].

The elementary excitation of a FM spin-1 chain is a
magnon-like spin-flip |1〉 → |0〉. This excitation has a
well-defined energy and momentum and is relatively easy
to understand. However, magnon-magnon interactions
are possible leading to a renormalization of the spin ex-
citation energies in ways that are quite distinct from the
more commonly studied spin-1/2 chains. For example, as
we will discuss below, in a spin-1 chain when two spin-
flips (two magnons) come together, they can tunnel into
other configurations like |00〉 → |1−1〉 and |−11〉 to form
a hybridized state which can alter the magnon spectrum.
This process cannot occur in spin-1/2 chains.

The physics of such spin chains may be modeled with a
nearest-neighbor exchange interaction J and an in-plane
anisotropy strength D. For spin-1, weakly anisotropic
chains D<J with AFM interactions, one obtains the

‘Haldane gap’ which has been the subject of extensive
studies and is an early example of a symmetry protected
topological phase [4]. For the FM case, one can obtain
gapped or gapless excitations depending on the sign and
size of D relative to J [8, 9]. Little is understood about
the FM case with D<J , unlike its AFM counterpart.
There have been few theoretical studies (e.g. [8, 33]), and
even fewer experiments for this case.

Here we use time-domain THz spectroscopy (TDTS)
to experimentally investigate the excitations of NiNb2O6

and their interactions. At low temperatures, we find spin
excitations whose energies and magnetic field dependence
correspond well to the single-magnon spectrum (at q ∼ 0)
of a 1D spin-1 Heisenberg ferromagnetic chain with weak
unidirectional anisotropy. At higher temperatures, we
observe a renormalization of the magnon energies that
depends on the external field direction. This renormal-
ization occurs due to magnon-magnon interactions which
are a consequence of the spin-1 nature of the system and
do not have an analog in the spin-1/2 chain. To ad-
dress this, we employ the finite temperature dynamical
Lanczos algorithm [34], and determine the effect of these
interactions on the dynamical response at finite temper-
ature. Our findings shed light on the unique nature of
magnon interactions for a spin-1 chain and give a general
perspective on how TDTS in conjunction with numerical
calculations can be used to understand finite temperature
spin dynamics and interactions.

NiNb2O6 belongs to a family of quasi-1D compounds,
the most prominent of which is the Co variant that is
perhaps the best example we have of a quasi-1D spin-
1/2 Ising system [17, 18]. With Ni, the magnetism is
both spin-1 and more isotropic. The structure consists
(Fig. 1(a)) of zigzag edge-sharing chains of NiO6 octahe-
dra along the crystallographic c axis with ferromagnetic
exchange interactions between nearest-neighbor spin-1
Ni+2 ions. Since the intrachain coupling along the c di-
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FIG. 1. (a) Ni spin-1 chains along the crystallographic c axis
in the bc plane of NiNb2O6. (b) Transmission amplitude as a
function of frequency ν in the absence of an external field (H
= 0) for various temperatures. Here k‖a, e‖c, h‖b, where k
is the wave-vector of the incident THz while e and h denote
its a.c. electric and magnetic fields respectively. (c)-(d) Field
dependence of transmission at 5 K for both transverse and
longitudinal field geometries respectively.

rection is significantly stronger than the interchain cou-
pling (J‖/J⊥ ∼ 20) along the a or b direction, we can con-
sider the system as an effective 1D spin-1 ferromagnetic
chain with the c its easy axis [35]. The spin Hamiltonian
of this system in an external field can be described with
Heisenberg exchange interactions with onsite anisotropy
as follows:

H = −|J |
∑
〈i,j〉

~Si · ~Sj − |D|
∑
i

(Szi )2 − gH ·
∑
i

~Si (1)

where −|J | is the ferromagnetic exchange interaction, D
is the local onsite uniaxial anisotropy, Si are spin-1 oper-
ators and g is the coupling strength to the external field
H (assuming an isotropic g-tensor). Note that in our
calculations, a, b, c refer to crystal directions, whereas
x, y, and z correspond to spin quantization directions.
Although an isolated chain with Ising anisotropy orders
only at zero temperature, NiNb2O6’s FM chains order
with AFM order below a temperature of 5.7 K due to
weak interchain interactions. By fitting the specific heat
and magnetization data Heid et al. [35] determined J =
14.8 K (0.308 THz), D = 5.2 K (0.11 THz) and g = 2.3.

The NiNb2O6 crystal was grown by the floating zone
method and oriented by back reflection Laue diffraction
(see Supplementary Material [36–40] (SM)). TDTS ex-
periments were performed in external fields up to H =
68 kG in both Faraday geometry with transverse field
(wave vector k‖H, H⊥c) and Voigt geometry with longi-
tudinal field (k⊥H, H‖c) at temperatures ranging from
4 K to 150 K. The spectral range of our TDTS setup is
limited to > 0.1 THz in the Faraday and > 0.15 THz
in the Voigt geometries with a spectral resolution of
∼ 1 GHz. For magnetic insulators, TDTS functions

as high-field electron spin resonance and allows a de-
termination of the complex ac magnetic susceptibility
χ̃(ν) = χ1(ν) + iχ2(ν) at THz frequencies in the zero
momentum limit. χ̃(ν) is obtained after normalizing
the transmission at a reference temperature (here 150 K)
above the onset of magnetic correlations (see e.g. [39, 41–
43]).

Fig. 1(b) shows the magnitude of the transmission
(T (ν)) of NiNb2O6 as a function of temperature down
to 4 K with the THz wave-vector k‖a and the THz ac
magnetic field h‖b. In this orientation, a clear absorp-
tion peak is observed as the temperature is lowered. The
low T peak center frequency of 0.11 THz at 4 K is in good
agreement with anisotropy parameter D = 0.11 THz [35].
Note that in zero-field, the local anisotropy term in
D (Eq. 1) breaks the isotropic symmetry of the Heisen-
berg term resulting in a gap of magnitude |D| in the mag-
netic excitation spectrum as we observe [8]. To further
understand these magnetic excitations, their dynamics
and interactions in NiNb2O6, we perform TDTS mea-
surements as a function of both magnetic field and tem-
perature in both transverse and longitudinal geometries.

Fig. 1(c) and Fig. 1(d) shows the field dependent
transmission at 5 K in both transverse (H⊥c) and lon-
gitudinal (H‖c) field geometries. Magnon peaks are ob-
served in both cases. The peak center frequency (νc) is
extracted by fitting the imaginary part of complex mag-
netic susceptibility, χ2(ν), to a Lorentzian (see Fig. 2b
and Fig. 2d). νc as a function of external magnetic field
is shown in Fig. 2(a) for transverse geometry. At 5 K
(dark blue squares), only the zero-field spectra and the
spectra above 40 kG show excitations with νc > 0.1 THz.
Above 40 kG, νc varies linearly with field as νc ∼ gµB
with an offset (µB is the Bohr magneton). From a lin-
ear fit to the data at 5 K (see SM [36]), we extract a
g-factor of g = 2.14 which is in good agreement with
Heid et al. [35]. The behavior of the magnon center fre-
quency at 5 K is consistent with a field-induced ferromag-
netic (FM) to paramagnetic (PM) phase transition in the
spin-1 chain [35]. To understand the effect of thermal ex-
citations on the magnetic spectra, we measure χ2(ν) at
fixed field for various temperatures up to 110 K.

Fig. 2(b) shows the temperature dependence of χ2(ν)
at 68 kG in the transverse geometry. Clear magnon peaks
are observed for temperatures up to 110 K. At each tem-
perature, the measured magnon νc scales linearly with
field for fields > 40 kG (Fig. 2(a)). With increasing
temperature, the peak height of the magnon reduces and
the peak broadens as expected for thermal broadening of
magnetic excitations. Interestingly, rather than staying
constant, the magnon peak frequency shifts higher with
increasing temperature for each field. In the absence of
any transitions, this is quite unusual for magnetic ex-
citations as they typically just broaden with increasing
temperature and shift only slightly [18, 39]. Fig. 2(c)
shows the temperature dependence of the magnon νc at
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FIG. 2. (a) Field and (c) temperature dependence of the cen-
ter frequency νc of the peak observed in χ2 for k‖a, e‖c, h‖b.
Error bar in (a) represent 95% confidence interval. Dashed
lines are calculations as described in the text. (b) and (d)
Imaginary part of the magnetic susceptibility χ2(ν) for vari-
ous temperatures. H = 68 kG (H‖a) in (b) while H = 65 kG
(H‖c) in (d). Dashed lines are fit to a Lorentzian. Note that
the susceptibility data near the peak is unreliable in (d) due
to very strong absorption. It was excluded from the plots and
fits for this reason.

different magnetic fields. νc increases linearly with tem-
perature until ∼ 30 K after which it asymptotically satu-
rates. This agrees well with the temperature above which
the susceptibility obeys the Curie-Weiss law (30 K [35]).

We carry out similar analysis as described above in the
longitudinal geometry (H‖c) (see SM [36]). Fig. 2(d)
shows the resulting χ2(ν) at 65 kG for various tempera-
tures. In this orientation, we also observe magnetic ex-
citations that weaken in intensity with increasing tem-
perature. Importantly, the temperature dependence of
the magnon peaks in the longitudinal geometry is oppo-
site to that observed in the transverse geometry. Here,
the magnon peaks shift towards lower frequencies with
increasing temperature. Moreover while there is some ev-
idence for a field-induced phase transition in the trans-
verse geometry (See SM [36]), the behavior is different
with the longitudinal field (See SM [36]). Magnon cen-
ter frequencies in both orientations show a linear depen-
dence on field at high fields with a similar g-factors (see
SM [36]).

We posit that the field-dependent change in the
magnon energies at higher temperature is indicative of
magnon-magnon interactions renormalizing the excita-
tion spectrum. To check this, we perform exact diag-
onalization (ED) calculations on the 1D Hamiltonian in
Eq. 1 for chain length L = 14 at 0 K to determine the
low-lying energy states of the system as a function of ex-
ternal field. Fig. 3(a) and 3(b) show these excited state
energies with respect to the ground state (GS) for trans-
verse and longitudinal geometries respectively using the
parameters g = 2.14, J = 14.8 K and D = 5.2 K deter-

0.5

0.4

0.3

0.2

0.1

0.0

E
 (

T
H

z
)

6040200
H (kG)

H||c, T = 0 K

0.4

0.3

0.2

0.1

0.0

E
 (

T
H

z
)

H | c, T = 0 K(a) (c)

(b) (d)

0.15

0.10

0.05

0.00

N
o

rm
a

liz
e

d
 C

o
rr

e
la

to
r

-40 -20 0 20 40
Lattice Site

 L = 100
 L = 80
 L = 60
 L = 40
 L = 20

H||c
0.15

0.10

0.05

0.00

N
o

rm
a

liz
e

d
 C

o
rr

e
la

to
r

40200-20-40
Lattice Site

 L=100
 L=80
 L=60
 L=40
 L=20

H | c

(e) (f)

1.0

0.8

0.6

0.4

0.2

0.0

c
2
 (

a
rb

. 
u

n
it
s
)

0.300.250.200.15

n (THz)

H||c, k||a, h||b, e||c
        H = 65 kG

1.0

0.8

0.6

0.4

0.2

0.0

c
2
 (

a
rb

. 
u

n
it
s
)

H | c, k||a, h||b, e||c
       H = 65 kG

1K  5K
6K  8K
10K 15K
20K 25K
30K 40K
50K 70K
100K

FIG. 3. Simulated excited state energy spectra (relative to the
ground state) of the spin-1 chain (L = 14) as a function of ex-
ternal magnetic field (a) along the a-axis and (b) the c-axis.
Bold points correspond to the excited states with the size
of the big circles proportionate to |〈Excited|Sy|Ground〉|2
(c)-(d) Simulated temperature dependence of normalized χ2

computed with finite temperature dynamical Lanczos at H
= 65 kG in both transverse and longitudinal geometries with
a Lorentzian used to broaden the spectra. The normalized
magnon-magnon correlator (see text) for (e) transverse (as-
suming the two spin flip term can be ignored, see SM [36])
and (f) longitudinal geometries with respect to a chosen ref-
erence site (labeled as site 0), evaluated in the lowest en-
ergy 2-magnon wave function in chains of different lengths,
for H =70 kG. The correlator of a site with itself has been
omitted.

mined from earlier heat capacity and magnetization mea-
surements [35]. Because a photon can only excite a single
magnon with spin change of ∆S = 1, at 0 K only the first
excited states (E10 = E1 − E0, where E0 is the GS en-
ergy) are accessible with THz light [15]. These states are
represented with bold points whose size represents the
intensity of the excitations in TDTS experiments. These
ED results match closely the measured excitation νc at
5 K for both transverse (Fig. 2(a)) and longitudinal ge-
ometries (see SM [36]). In the transverse case, the ED
results suggest a second order transition from the ferro-
magnetic to a paramagnetic phase, which is analogous to
the phase transition in the spin-1/2 transverse field Ising
model [15]. Since finite size effects near the critical point
can be severe, additional DMRG calculations of the first
two excited states were performed for a chain length of
200 to confirm this observation (see SM [36]). For the
longitudinal geometry (Fig. 3(b)), the ED calculations
show no phase transition, as expected.

Having understood the field dependence of magnons in
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NiNb2O6 in the low temperature limit, we now turn to
the principal unexpected finding in TDTS measurements,
i.e., the unique temperature dependence of magnon ener-
gies - shift towards higher (lower) energies with increasing
temperature in the transverse (longitudinal) geometries.
In the low-temperature limit, it is only possible to ex-
cite one magnon due to an absorption of a photon, i.e.,
by making a transition from the GS to the first excited
state (E10). However, at higher temperatures (T ' E10),
it becomes possible to have one-magnon transitions be-
tween higher energy states as well. For example, due
to thermal excitations of E10, a single photon absorp-
tion can also excite to two-magnon states with energy
E21 = E2 − E1. In a harmonic model for the magnon
spectrum (Holstein-Primakoff to quadratic order), all ex-
cited states should be equally spaced and as such, the ex-
citation peak will always be centered at νc = E10 = E21

regardless of temperature. However, magnon-magnon in-
teractions can renormalize the excitation spectrum re-
sulting in energy shifts. To see how this arises in a
spin-1 chain, we consider the effects of two-magnon in-
teractions in both field geometries. For longitudinal
field, the energy of one magnon excitation (|1〉 → |0〉)
is ∆E10 = 2SJ(1 − cos(q)) + (2S − 1)D + gµBH [8],
giving ∆E10 = D + gµBH for q = 0 and S = 1,
where the ground state (ψGS = |1..111..1〉) has en-
ergy E0 = −N(J + D + gµBH). At zero-field we get
E10 = D = 0.11 THz which is exactly the energy of the
first excited state observed at 5 K [Fig. 1(b)] in the TDTS
measurements and in ED [Fig. 3(a)].

A two magnon state can be constructed by reducing
the azimuthal spin by one unit at two different sites
(|..11111..〉 → |..1011011..〉) giving an energy of 2E10 [8].
This is the case when the two magnons are well sep-
arated and not interacting with each other. However,
when the two magnons are on adjacent sites, i.e., |00〉,
then due to the spin-1 nature of the system the |00〉
configuration can tunnel into other spin-preserving states
like |00〉 → (|+1−1〉 or |−1+1〉) which can lower the to-
tal energy of the system. A crude approximation for
the energy gained by the |00〉 magnons due to this hy-
bridization is given by Egain = −(J + 2D/3) which gives
E21 = E1−E0−2D/3 < E10 (See SM [36]). This implies
that there is an effective magnon attractive interaction
creating a two-magnon bound state in longitudinal field.
This attraction can also be verified from full diagonaliza-
tion calculations on long chains up to L = 100 [44] - we
find E20 < 2E10 and from inspecting the spatial magnon-

magnon correlator ( L
〈(

1 − (Siz)
2
)(

1 − (S0
z )2
)〉

, with

respect to the central site chosen to be “0”) for the en-
ergetically lowest 2-magnon wavefunction shown in Fig.
3(e). Thus, with increasing temperature, we expect a
shift of the effective excitation peak to lower frequencies
as observed in longitudinal geometry. (Fig. 2(d)). Note
that the process described cannot occur in the typically

studied spin-1/2 case since two spin-flips (or kinks) can-
not tunnel into other spin-preserving configurations. In
this regard spin-1 represents a special situation which is
low spin enough to have strong quantum dynamics, but
yet possess richer internal structure than spin-1/2.

In the transverse geometry when the external field H
is large, the GS is non-degenerate and paramagnetic. For
transverse field H�D, as is the case at 65 kG, the nat-
ural direction for spin quantization is along the a axis.
In this case, the energy of the one magnon state is ap-

proximately E10 = − |D|2 + gµBH with E0 = −N(J +
D/2 + gµBH)(See SM [36]). This reversal of sign in the
D term at large transverse fields, means that it costs en-
ergy to bring the two magnons adjacent to each other.
This implies that there is an effective repulsion between
two magnons in the transverse field paramagnetic phase,
this is made more illuminating by observing the spatial
magnon-magnon correlator in the energetically lowest 2-
magnon wavefunction in Fig. 3(f) (see SM [36]). Hence
with increasing temperature we have more repulsive in-
teractions leading to a shift in the effective excitation
peak to higher frequencies, which is as observed in the
transverse geometry (Fig. 2(c)).

Within the models described above, we can qualita-
tively explain the observed shift in the magnon ener-
gies with temperature in terms of a renormalization of
the spectrum based on effective magnon-magnon inter-
actions. To further understand the observations we cal-
culate the finite temperature susceptibility using the fi-
nite temperature dynamical Lanczos algorithm [34] for
a chain length L = 14. For q = 0, we calculate the
frequency dependent correlation function as Cyy(ν, T ) =
1
Z

∑
n,m e

−βEn |〈m|Sy|n〉|2δ(En+ν−Em), where Z is the
partition function, involving the sum over all eigenener-
gies, β is 1/kBT , En and Em are the energies of excited
and ground levels respectively. At finite temperatures
the excited states acquire finite lifetimes due to magnon
decay processes. To compensate for the discrete spectra
that arises from finite size effects, we broaden the delta
functions using a Lorentzian description δ(ν − νnm) =

limε→0
ε/π

(ν−νnm)2+ε2 where νnm = Em − En and a broad-

ening ε = 0.01 THz. We then calculate the dynamical
susceptibility as χyy(ν, T ) = π(1− e−βν)Cyy(ν, T ) which
is equal to χ2(ν) [9].

Fig. 3(c) and 3(d) show the simulated χ2(ν) at 65 kG
at various temperatures for transverse and longitudi-
nal geometries respectively. In the transverse geometry,
the magnon peaks in the calculated χ2(ν) shift towards
higher frequencies with increasing temperature while the
opposite is the case for the longitudinal geometry (Fig.
2(c) and Fig. 2(d)). For a direct comparison between
these calculations and the experiment, we plot the cen-
ter frequencies of the peaks in the calculated χ2(ν) in the
transverse geometry in Figs.2(a) and (c) (dashed lines) at
choice temperatures and fields. There is good agreement
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between the measured and calculated νc.
To conclude, we have provided experimental and the-

oretical evidence for magnon interactions in a ferromag-
netic spin-1 chain through the observed shift in the peak
frequencies with temperature in an external field. De-
pending on the field orientation these interactions are
either attractive or repulsive (at large transverse field).
We note that while our experimental work relied on ther-
mal excitations to generate and subsequently probe two
magnons within linear response, one can imagine utiliz-
ing non-linear THz spectroscopy with intense THz pulses
to directly excite higher order states via two-photon ab-
sorption [45, 46]. Subsequent interaction dynamics may
be studied with the resulting non-linear response of the
system.
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