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Abstract: Confining and controlling electromagnetic (EM) energy typically involves a highly-

resonant phenomenon, especially when subwavelength confinement is desired. Here, we present a 

class of non-resonant, self-dual planar metastructures capable of protected energy transmission 

from one side to the other, through arbitrarily narrow apertures. It is shown that the transmission 

is in form of matched propagating modes and is independent of the thickness and specific 

composition of the surface. We analytically prove that the self-dual condition is sufficient to 

guarantee 100% transmission that is robust to the presence of discontinuities along the 

propagation path. The results are confirmed numerically through study of various scenarios. The 

operation is broadband and subject only to the bandwidth of the constituent materials. The 

polarization of the internal field can also be independently controlled with respect to the incident 

one. Our structures are promising for applications in sensing, particle trapping, near-field 

imaging, and wide scan antenna arrays.     

   

It is well known that the interface between two structures with different compositions and 

constituent materials naturally entails a portion of incident EM energy to be reflected back toward 

the source. The reflection can, however, be reduced or fully eliminated through “matching” the 

interfaces, which is typically possible over a narrow frequency range [1], [2]. In situations when 
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engineering the transmission spectrum of a surface is sought for, the internal field distribution in 

the medium is not of particular importance. For instance, planar free-space filters (color filters, 

frequency selective surfaces, etc. [3]-[5]) may create complex and unpredictable near-fields that 

strongly depend on their structural geometry and materials. On the other hand, the ability to control 

the field distribution across a surface while maintaining high throughput, also triggers several 

potential applications. As an example, creation of localized hot-spots for EM energy in free-space 

is quite challenging and very high numerical aperture lenses or complex structures are required to 

focus energy in nearly diffraction-limited spots [6]-[8]. However, it is known that a perforated 

metallic screen with subwavelength holes can be properly designed to be matched with free-space 

and enable such localized enhanced field intensities on the surface, albeit for a narrow range of 

frequencies, promising for applications in opto-electronics and optical devices [9].  

A relevant question that we address in this paper is whether it is fundamentally possible to design 

planar slab-like structures through which electromagnetic energy can be funneled along arbitrarily 

shaped, and particularly deeply subwavelength, apertures and at the same time remain fully 

matched to free-space. We do not impose any restrictions on the thickness of the slabs, i.e. we are 

considering configurations ranging from ultrathin plates with zero thickness to electromagnetically 

thick slabs. A related phenomenon that has been extensively studied in the past two decades is the 

case of extraordinary optical transmission (EOT) through subwavelength hole arrays. EOT 

introduced a new potential mechanism for concentrating EM energy at the subwavelength scale, 

as the light transmission through these hole arrays exceeds the Bethe limit [10], and even reaching 

100% efficiency [11]-[15]. The high throughput apertures and the locally enhanced intensities 

prompted applications in chemical and bio sensors [16]-[17], photo emitters and detectors [18]-

[20], enhanced Raman spectroscopy [21], [22], lasers [23]-[25], photonic elements [9], [26], [27], 
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nonlinear optical devices [28]-[30], and high resolution photolithography [31], [32]. The physical 

mechanism behind the high level of transmission in EOT have been argued to be related to the 

existence of leaky surface modes (surface plasmons) coupling through evanescent waveguide 

modes present in the subwavelength holes [12], [14], [33]. The evanescent transmission through 

below-cut-off holes, however, creates an exponential decay in the transmission amplitude as the 

thickness of such surfaces is increased [33]. In a quite different context, perfectly matched layers 

(PMLs) or absorbing layers have been studied for applications in numerical simulations and 

software packages to truncate the simulation domains. Rooted in their application, the core 

property of such artificially constructed materials is to remain matched to free-space over a wide 

range of incident angles and frequencies [34]-[36]. Matching is achieved through balancing 

electromagnetic properties of the material typically combined with a gradual increase in the loss 

coefficients. Checkerboard type configurations with electric-only and magnetic-only regions have 

also been studied in the past and reported in the literature as an approximation of such absorbing 

layers and Weston’s ([37]) impedance matching condition [38]-[40].   

Here, we propose a general class of planar configurations that are matched to free-space under 

normally incident plane wave excitation, i.e. the reflection coefficient (backscattered power) is 

exactly zero. Matching across the interfaces as well across all cross-sections within the slabs is 

independent of the specifics of their patterning or their constituent materials, as long as they satisfy 

a certain duality condition discussed below. As shown in Fig. 1a, we assume a two-dimensionally 

periodic planar arrangement of electrically polarizable (materials with 1r  ) and magnetically 

polarizable ( 1r  ) regions. Unit cells are in the cross-sections (x-y planes) of the slabs, with equal 

periods “L” in both directions and the origin of the local coordinates is placed at the center of this 

unit cell. The composition of the structure in the unit cell may also vary for different values of 
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0z z , i.e. it does not require to be z-invariant. We define such unit cell to be “self-dual” if the 

following condition is satisfied for the relative permeability and the relative permittivity at any 

0z z : 

    , , .r rx y y x     (1) 

Inspecting Eq. (1), this condition defines a class of planar unit cells that remain unchanged if 1) 

the structure is rotated 90 degrees around the z-axis, and 2) any electric material with relative 

permittivity r  is replaced by a magnetic material with relative permeability r r  , and vice 

versa. The distributions of r and r  are thus related through 4C  rotational symmetry. A simple 

case of such cross-section is shown in Fig. 1b, in which only two different materials in each unit 

cell are considered (for more general examples see the supplementary materials [41]). Here, we 

focus on periodic self-dual surfaces, however, the subsequent proof is general and valid for any 

non-periodic (i.e., even single) self-dual scatterer as well. In such cases, the far-field scattering 

pattern of the self-dual element has a null in the backscattering direction.  
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Fig. 1. Self-dual periodic slabs. (a) Conceptual representation of the unit cell of a self-dual slab, infinitely 

extended in x- and y-directions with period “L”. Green and blue colors represent regions with electrically 

polarizable ( 0 0,r      ) and magnetically polarizable ( 0 0, r      ) materials, assuming 

r r  . Each unit cell is invariant under a 90-degree rotation around the z-axis and swapping electric and 

magnetic materials. For simplicity, the case of only two materials in shown here. A horizontal z-cross-

section cut of the geometry along the gray surface is shown in panel (b). Cross-section of the slab may 

arbitrarily vary between layers in terms of both shape and material properties, as long as the self-dual 

condition in Eq. (1) is satisfied (see examples in [41]). (c) Illustrations of three Problems used in our proof: 

Problems a: The original cross-section, Problem b: The dual of “Problem a” constructed by changing the 

properties of constitutive materials and fields, according to duality theorem [43], and Problem c: 90-degree 

rotation of “Problem b” (clockwise rotation is shown. The counterclockwise rotation follows similar 

formulation).   

 

We now prove the following statement: if we take a generic slab whose cross-sections, including 

the interfaces, satisfy the self-duality condition in Eq. (1) it will produce zero backscattered field 

for arbitrarily polarized normally incident waves. Let’s assume a normally incident plane wave -
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propagating in the negative z-direction and with electric and magnetic field amplitudes defined as 

 inc inc,E H , in which each vector lies in the x-y plane. The back scattered far-field (i.e. wave 

travelling along the +z-axis) is then a Spherical wave with the amplitudes  back back,
ikze

kz
E H . 

Defining the 2 2  scattering matrices S ,S
E H

 [42], the relation between the backscattered and 

incident wave amplitudes is,   

 
back inc back incS , S .   

E H
E E H H   (2) 

It is straightforward to derive a general relation between S
E

 and S
H

 for an arbitrary scattering 

body [41]. For the self-dual structure, we evoke the duality theorem [43], followed by a 90-degree 

rotation operator (See Fig. 1c). Assuming problems “a” and “b” corresponding to the original and 

dual cases, respectively, 

 
back back back back1

,b a b a


  H E E H   (3) 

By virtue of self-duality, the dual problem “b” is also obtained by a 90-degree rotation operator, 

i.e., problem c (e.g. for the incident field, with similar expressions for the reflected fields), 

 inc inc inc incˆ ˆ,c b c b     E z E H z H   (4) 

In which the   signs indicate 90-degree counterclockwise or clockwise rotation in the x-y plane, 

respectively. Self-duality ensures that problems “c” and “a” are identical (See Fig. 1c). Combining 

Eqs. (1), (3) and (4) yields an additional relation between S
E

 and S
H

 [41], which cannot hold 

simultaneously with the previously derived condition, unless 
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 S S 0, 
E H

  (5) 

proving the above statement.  

The results derived in Eq. (5) have an interesting implication for a periodic self-dual structure: the 

specular reflection coefficients (for both co- and cross-polarizations) are exactly zero under 

normally incident plane wave illumination. In other words, independently of the geometrical 

details of the slab or the materials used in constructing the unit cell of the periodic structure-, as 

long as the self-duality condition is satisfied the surface remains matched to normally incident 

plane waves of arbitrary polarization. Indeed, values of permittivity/permeability may even change 

between different cross-sections, yet the zero-reflection condition will always be satisfied. If the 

period of the cross-section is smaller than a wavelength, i.e. only zeroth-order Floquet harmonics 

are present in the scattering response, it is implied that the entire incident energy must be 

transported through the slab. If higher order Floquet modes are present, Eq. (5) implies zero 

coupling into zeroth order reflection harmonics while some portion of power may couple to higher 

order reflection or transmission modes (see more discussion in [41]). Furthermore, the proof does 

not impose any restrictions on the local material properties, and they might be chosen as general 

as possible. For instance, permittivities and permeabilities might be both lossy (with the balanced 

conductivity in accordance with self-duality condition), implying absorption in the surface without 

reflection (more discussion in [41]). With proper design, it is also expected that a self-dual 

arrangement be able to absorb the entire incident energy. From a physical point of view, the full 

cancellation of backscattering is enabled through destructive scattering from electric and magnetic 

elements. Exploiting two independent sets of elements (i.e. those supporting electrics current and 

those supporting magnetic ones) along with the structural symmetry allowed us to enforce zero 

backscattering. This approach is closely related to previous reports on controlling transmission and 
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distribution, absorption, and confinement of electromagnetic waves using proper degrees of 

freedom in the system [44]-[47].   

To further elucidate the implications of the above statements, we start by studying a generic slab 

with self-dual cross-sections shown in Fig. 2a. The unit cell is chosen to have a rather arbitrary 

profile, emphasizing the generality of the matching condition in Eq. (1). Each unit cell consists of 

eight cylinders with trapezoidal and circular cross-sections, maintained between 1 2z t   and 

2 2z t . We consider an extreme case of self-duality condition, i.e., we assume the electric 

materials are PEC (perfect electric conductors) shown by green color in Fig. 2a, and the magnetic 

materials are PMC (perfect magnetic conductors), indicated by blue color. Lattice period is fixed 

at 00.4L   in both directions, thus ensuring only zeroth order Floquet harmonics to be excited in 

the far-field. Full-wave numerical simulations [48] are used to calculate reflection and 

transmission coefficients for orthogonal linear polarizations of the incident wave when t  is 

assumed to be 00.4 . As we expect, self-duality ensures full transmission in both cases (electric 

field distributions portrayed in Fig. 2b), in spite of strong local field interactions of the incident 

wave and the electromagnetically thick slab. In this special case, since the scattering bodies are 

perfect conductors, the entire energy is flowing between the pillars and into the opposite interface 

of the slab. Counterpart example of dielectric-based structures are discussed in detail in [41].  

Interestingly, in spite of strong localized excitation of cross-coupled fields around the scatterers, 

the far-field inter-polarization coupling is negligible, and the transmitted wave maintains the 

polarization of the incident wave, as shown in Fig. 2b. While this may appear to be the consequence 

of the matching condition derived in Eq. (5), we note that the proof does not enforce conservation 

of polarization. Indeed, it should be possible, in principle, to couple the entire incident energy into 
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the orthogonal transmitted polarization. To further investigate this possibility we change the 

thickness of the surface between 00.02t   and 00.4t  , while looking at the percentage of the 

power coupled to co- and cross-polarized waves ( xxT  and yxT  for illumination with x̂ -polarized 

plane wave). Results are reported in Fig. 2c.  

First, we note that the total reflection is indeed zero, except for approximately 6% reflection around 

the resonance point at 00.362t  . This small reflection is attributed to numerical errors and mesh 

refinement at PEC/PMC corners [41]. At this resonant length, a complete polarization conversion 

is attained (i.e. 0xxT   and 1yxT  ), as shown in the field distributions of Fig. 2d, yet matching 

is still preserved. The possibility of managing the outgoing polarization state without creating 

unwanted reflection can be of great interest for compact, tunable optical elements.   
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Fig. 2. Matching and polarization conversion in a generic self-dual periodic slab. (a) Unit cell of a 

generic self-dual slab with period of 00.4L   in both x- and y-directions. Green and blue colors represent 

regions with perfect electric conductor (PEC) and perfect magnetic conductor (PMC) boundaries, 

respectively. For simplicity, the slab is invariant along z-direction between the interfaces at 1 2z t   and 

2 2z t , where 00.4t  . More general cases including z-variant structures are studied in [41]. (b) 

Snapshot in time of the electric field distribution when the slab in Panel (a) with 00.4t   is illuminated 

with a plane wave propagating along the negative z-direction. In each case, the component of the electric 

field parallel to the incident electric field is shown. Fields are normalized to the amplitude of the incident 
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wave (color bar shown in panel (d)) and both cases are fully matched. (c) Reflected and transmitted powers 

from the slab shown in panel (a) (solid lines) vs. its PEC counterpart, which is not self-dual (dashed lines) 

when illuminated with a x̂ -polarized plane wave propagating along negative z-direction. (d) Snapshot in 

time of x-component (left) and y-component (right) of the electric field, when the slab is illuminated with 

ˆ
i iEE x  and 00.362t  . At this specific thickness, the transmitted wave experiences 90-degree 

polarization rotation, while matching is maintained.     

 

 

For comparison, we also looked at the non-dual corresponding geometry where all the conductors 

are PEC. As expected, in the non-self-dual case the structure is not matched and a portion of the 

power is reflected back. This is shown with dashed lines in Fig. 2c, highlighting the drastic 

difference between the response of self-dual and all PEC surfaces, although both consists of 

impenetrable perfect conductors of the same shapes and sizes. It is quite insightful to describe the 

observed zero backscattering phenomenon as an “impedance matching” condition, in accordance 

with scatterers that satisfy the generalized Kerker relation at any interface normal to the direction 

of wave propagation, i.e.    0 0r rz z z z     [37], [49]. Our proof provides a significantly 

wider class of structures with similarly zero backscattering. Several near-field evanescent waves 

may be induced around a self-dual structure, yet from the far-field point of view the effective 

impedance of the scatterer as a whole is matched with free-space.  

While the previous example and the related discussions are general and do not entail a specific 

distribution of EM waves inside the structure, the composition of the surface can be properly 

engineered to create many interesting effects. One such case is to achieve extreme funneling, i.e. 

forcing the EM energy to traverse the slab while being highly localized into line-like channels with 

deeply subwavelength cross-sections. This is shown in Fig. 3a, where we fill almost the entire 

cross-section of the unit cell with impenetrable perfect conductors, leaving small air apertures for 
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the wave to traverse the structure. As the self-duality condition is satisfied, zero reflection 

automatically ensures that the entire incident energy must pass through the interface and inevitably 

though the narrow apertures (Fig. 3b). Interestingly, here the open apertures form waveguides 

(with deeply subwavelength cross-sections) capable of supporting TEM-like propagation modes 

along the z-direction. The local fields inside these waveguides are inversely proportional to the 

aperture area in each cross-section. As shown in Fig. 3c, each aperture supports its own TEM-like 

mode with  45-degree rotated polarizations relative to xy coordinates. Both types of modes are 

excited (i.e. we see fields in all nine apertures), when the illuminating plane wave is x̂ -polarized. 

However, if the structure is excited with a ˆ ˆx y -polarized wave, only half of the apertures would 

carry power to the other side and the local power would be doubled inside each aperture (Fig. 3d). 

Conversely, if we illuminate the periodic slab with a ˆ ˆx y -polarized wave, the other apertures 

would carry the energy.   

Interestingly, only small regions of near-filed coupling at the incident interface (i.e. at 2z t ) 

and the outgoing interface (i.e., at 2z t  ) are observed (Figs. 3b,e). When all the apertures are 

similar, the outgoing wave follows the same polarization as the input one. As discussed in the 

previous example, in principle it should be possible to alter the polarization of the output while 

maintaining zero reflection. Here, for instance, a simple recipe to that effect would be to change 

the speed of wave (i.e. wave number) in half of the apertures supporting x y polarized wave, 

compared to the other half that support x y polarized wave. As a result, one can control the 

rotation angle and ellipticity of the transmitted wave depending on the thickness of the surface.   
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Fig. 3. Electromagnetic funnel: reflectionless transmission of energy through deeply subwavelength 

apertures. (a) A horizontal cut of the unit cell of the self-dual periodic slab designed to transmit the EM 

energy through narrow air apertures (white). Period of the surface is 00.4L   in both x- and y-directions 

with 00.02r  , 00.01g  . Green and blue colors represent regions with PEC and PMC boundaries and 

the structure is invariant along the z-direction between 1 2z t   and 2 2z t  where 00.7t  . (b) 

Snapshot in time of the x-component of the electric field distribution when the structure is illuminated with 

an x̂ -polarized plane wave propagating along the negative z-direction. Amplitude of the field is normalized 

to the incident wave. (c) Total field enhancement inside the narrow apertures. Polarization of the field in 

the center aperture is shown in the inset. Depending on the arrangement of PEC and PMC segments in the 

unit cell, each aperture supports a TEM-like mode with 45-degree tilted polarization. Due to illumination 

with an x̂ -polarized electric field, power is divided evenly among all apertures. (d) Normalized power 

flowing along the negative z-direction as a function of x plotted at 0y z   (center of the object). Blue 

and red lines correspond to illumination with x̂ -polarized and ˆ ˆ x y -polarized waves. In the latter case, 

only half of the apertures carry energy and therefore the local power is doubled relative to the former case. 

The gray regions indicate the position of apertures (air). (e) Normalized amplitude and phase of the electric 

field along the propagation path in the middle of one aperture. Structure is illuminated with x̂ -polarized 

plane wave. Amplitude of the wave is approximately constant along the propagation path (except for short 

transition ranges at the beginning and end interfaces of the aperture with free-space), and the phase remains 

-1 0 1

-2

0

2

z/0

 

0

3

6

(a) (b) (c)

-1.5

1.5

ˆ
i xEE x

y

z

x

y

g

2r

(e)

0.0 0.1 0.2 0.3 0.4
0

20

40

60

x/0

P
.z

/P
i.z

 

0 6

x

y

PEC

PEC

PMC

PMC

iE E

ˆ E x

iE E

(d)



 14 

virtually linear. Effective wavenumber of the wave is equal to that of free-space, corresponding to the TEM-

like nature of the wave inside aperture.  

 

Our proposed class of reflectionless slab-like structures, along with the presented results on 

creating arbitrarily-shaped EM funnels, independence of the effect of thickness, the non-resonant 

nature of the phenomenon, and the possibility of managing the polarization of the outgoing wave, 

demonstrate a powerful concept in controlling EM energy. These characteristics are quite different 

from the typically ultra-narrowband transmission attained in EOT-based structures. Rather than 

relying on precise tuning of leaky surface modes and evanescent near-field profile, here we achieve 

matching through an elaborate combination of duality and rotational symmetry, providing us with 

a newly found freedom in design and a robust performance. We show that self-duality provides a 

protected form of power transmission that is immune to variations in the geometry and material 

properties along the propagation path (even for drastic changes along the path as discussed in [41]). 

This also brings interesting analogy with the concept of topological protected wave propagation. 

Adding loss, gain and/or nonlinearity may provide interesting degrees of freedom to design 

reflection-less absorptive and amplifying surfaces. As shown through the last example, it is 

possible to create extremely highly localized power transmission through electromagnetically 

thick surfaces and potentially across wide range of frequencies.  
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