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Cells estimate concentrations of chemical ligands in their environment using a limited set of
receptors. Recent work has shown that the temporal sequence of binding and unbinding events on
just a single receptor can be used to estimate the concentrations of multiple ligands. Here, for a
network of many ligands and many receptors, we show that such temporal sequences can be used to
estimate the concentration of a few times as many ligand species as there are receptors. Crucially,
we show that the spectrum of the inverse covariance matrix of these estimates has several universal
properties, which we trace to properties of Vandermonde matrices. We argue that this can be used

by cells in realistic biochemical decoding networks.
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Introduction.  Cellular environment contains many
chemical ligands that are sensed by cell surface receptors.
Typically, the number of ligand species is larger than
that of the receptors. However, in traditional treatments
of the problem, one only takes into account the (fluctu-
ating) steady-state occupancy of receptors [1-4], which
allows estimation of just one quantity (e. g., one ligand
species) per receptor. Recent work has focused instead
on using sequences of binding and unbinding times for the
estimation. The durations of unbound times carry infor-
mation about the concentrations [5], while the durations
of bound times identify the ligands. This allows to esti-
mate the concentrations [6] or to decide if a certain ligand
is present in the environment [7, 8] even in the presence of
spurious background ligands, or to get information about
more than one concentration simultaneously from a single
receptor [9, 10]. All of this can be done using biologically
plausible chemical reaction networks, such as variations
of the kinetic proofreading model [11, 12].

Here we turn to a previously not investigated regime,
where both the number of ligands and the number of re-
ceptors are large, and ligands and receptors interact with
a broad distribution of binding affinities, the so called
Multiple Inputs — Multiple Outputs (MIMO) problem.
This regime is interesting since many ligands and cellu-
lar receptors come in groups, where different receptors
respond to different related ligands with varying bind-
ing affinities [13-16]. Here we focus on understanding
general properties of such multi-receptor signaling sys-
tems, rather than on analysis of particular systems of
this type. We use maximum-likelihood (ML) and related
techniques [5, 6, 9], which provides estimates that are
consistent with the true concentrations [17], to estimate
concentrations of all ligands from outputs of all recep-
tors. ML estimator are provably optimal in using the
binding information for the estimation [5]. We then fo-
cus on the co-variance of the estimates, obtained from
the Hessian matrix. Our main finding is that the eigen-

value spectrum of this matrix exhibits universal behav-
iors (logarithmic gaps and degeneracy), which we trace
to properties of Vandermonde matrices. We argue that
such MIMO problem is common in various biological sys-
tems, and it is also of relevance more broadly, beyond the
ligand-receptor problem we study here. In particular, the
logarithmic scaling parallels earlier work [18], which ob-
served it in more generic statistical inference problems.

Model. Consider a mixture of Ny, ligands, with concen-
trations c,,a € [1, Np], that bind to Ny receptors with
binding (unbinding) rates kq; (7ai). Notice that Ny, can
be larger than Ny, so that more ligand concentrations are
being measured than there are receptor types. Further,
ligands and receptors cross-react, so that, in principle,
koi > 0 and r,; < oo for all & and ¢. Thus we do not dis-
tinguish cognate and noncognate ligand-receptor pairs.

Suppose n; binding/unbinding events happen on the
i’th receptor over the measurement time 7. There is
no way of knowing which particular ligand caused which
binding, but binding durations are known, which pro-
vides some information about the ligand identity. In the
regime of interest n; > 1 and a single binding or un-
binding event matters little. Thus we assume that all
receptors are unbound at ¢ = 0 and bound at ¢t = T.
Then the sequence of unbound/bound durations of the
i’th receptor is {71, 7P} = {Tﬂ,Tﬂ,Ti,T§i7...,Tﬁi7Tﬁi .
The likelihood of observing such a sequence is given by
a generalization of Eq. (1) from Ref. [9]:
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The log likelihood can be maximized to get the maxi-
mum likelihood estimator. Instead we focus on the maxi-
mum a posteriori (MAP) estimators of the concentration
vector {cn}, which is asymptotically equivalent to ML,



log,,(Eigenvalue)

0.10.20.30.4050.60.70.80.9
Ar

FIG. 1: (a) Eigenvalue spectrum of —log P” plotted for different total observation time T for a network of 4 receptors and
40 ligands. The eigenvalues are averaged over 10 random realizations of the unbinding rates. All concentrations and binding
rates are set to 1. The unbinding rates are chosen from a log-normal distribution with mean parameter 1 and the standard
deviation parameter 0.1. In these simulations, we have set the minimum eigenvalue (the inverse of the prior variance) as 10710,
In reality, eigenvalues much smaller than 1 (red dotted line) will be dominated by the prior and are not physically relevant. The
largest eigenvalue corresponds to measuring the total concentration of all ligands. Other eigenvalues group together in subsets
of the number of receptors (here Nr = 4). These subsets are nearly equally spaced on the log axis. (b) Averaged (over 1000
random realizations of the unbinding rates) eigenvalue spectrum of —log P”" vs the number of receptors, Ng. Here Ni, = 40
and T = 10*. The concentrations and the unbinding rates are as above. As the number of receptors changes, the size of the
split subsets follows. (c) Averaged (over 1000 random realizations of the unbinding rates) eigenvalue spectrum of —log P" vs
the standard deviation of the unbinding rate distribution, which is log-normal with the mean parameter 1. We simulated a
network of 4 receptors and 40 ligands for T = 10*. The concentrations and binding rates were chosen as earlier. A network
with wider range of unbinding rates estimates concentrations better (larger eigenvalues).

but also takes into the account the Bayesian prior over
the concentrations. We choose MAP since, at small T
and N1, > Ng, the prior helps to regularize the inference.
Differentiating Eq. (1) w. r. t. ¢, gives the following Ny,
coupled algebraic MAP equations:
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where P represents the prior over the concentration dis-
tribution. The accuracy of the estimates can be obtained
similar to the fluctuation determinant of a classical sys-
tem. The co-variance of the estimation can be obtained
from the inverse of the Hessian matrix (log P”),p evalu-
ated at the MAP solution. We get:

Nr
log P = Z log P/’ + log P", (3)
i=1
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Here we assumed that the a priori concentrations are
independent, so that the off-diagonal elements of the a
priori co-variance matrix are zero. log P/’ contains terms

that are contributed to the a8 entry in the Hessian ma-
trix by the receptor i. The sum in Eq. (4) is over the
durations, for the which this i’th receptor was bound, in-
dicating that only the distribution of bound durations is
informative of the ligand concentrations.

Variances of the estimates scale as the inverse of the
eigenvalues of —log P” — high eigenvalues correspond to
lower variance of various linear combination of the esti-
mated concentrations. Thus we focus on the spectrum of
eigenvalues of —log P” in the rest of the paper.

Eigenvalue spectrum of the inverse covariance matric.
To illustrate the main properties of the eigenvalues of
—log P”, we performed simulations of ligand-receptor
networks of varying sizes. We explored different dis-
tributions of binding rates, concentrations, and unbind-
ing rates, and these have little effect on the conclusions
drawn below, unless noted otherwise. First, we set all
(nominally unknown) ligand concentrations and binding
rates to 1 for simplicity, which means that all ligand
concentrations are equally difficult to measure, and con-
tribute equivalently to the inference problem. Further,
we choose to work with the log-normal distribution of
unbinding rates (or, equivalently, normally distributed
energy barrier between bound and unbound states). Fig-
ure 1 shows the eigenvalues of the matrix — log P” vs the
total simulation time T for a network of 40 ligands and
4 receptors in panels (a) and (c¢), and a variable number
of receptors in panel (b). The largest singleton eigen-
value in each column corresponds to the variance of the
estimate of the total concentration, ciot = Y . This
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FIG. 2: Asymptotic properties of the inference are reflected in
the negative logarithm of the determinant of the Fisher infor-
mation matrix per ligand species, F. We plot F vs. N./Ng,
connecting the data points with (a) constant Ny, and (b) con-
stant Ngr. Parameters of the simulations are as in Fig. 1, with
the log-variance of the log-normal distribution of the unbind-
ing rate Ar = 0.1, and 7' = 100. Asymptotically, F scales as
(Np)*, o~ 3.7, and as 1/ (Nr)?, 8 ~ 1. Insets in both panels
show how a and § change with T. Error bars represents (+)
1 standard error obtained from the linear fits.

can be seen by considering perturbations of the unbind-
ing rate around a mean unbinding rate. The rest of the
eigenvalues come in nearly degenerate subsets, whose size
is equal to the number of receptors in the network, and
these sets are separated almost equidistantly on a log-
scale. It is this degeneracy that allows the system to
gain information about many combinations of concentra-
tions at nearly the same observation times. Further, the
mean of the eigenvalues and the top singleton eigenvalue
are higher for systems with more receptors — which corre-
sponds to a better inference coming from more indepen-
dent samples of the concentrations, cf. Fig. 2. Finally, as
the variance of the unbinding rates increases, the eigen-
values get lifted (the overall inference improves), and the
splitting of subsets decreases, which suggests that (i) di-
versity of cross-reactivities among ligands and receptors
improves the estimation, and (ii) the splitting is due to
the degeneracy of similar unbinding rates. Overall, this
analysis suggests that detecting a lot of information even
from cross-talking receptors does not require fine-tune
receptor-ligand binding affinities.

We now assume that the concentrations c,, are sampled
from an unknown Gaussian distribution, N'(uy = 1,0 =

1). We can quantify the ability to infer the concentrations
from the binding data by calculating the Fisher informa-
tion — the expected value (over the concentration prior)
of the Hessian of the log-likelihood matrix at the MAP
solution; the Fisher information measures the certainty
with which parameters of the model can be inferred from
data. It provides the lower limit on the variance [19].
Specifically, we focus on the negative logarithm of the
determinant of the Fisher information matrix, divided by

the number of ligands, F = — <log det ( C’{g\MAP) > /N1,

It represents the average logarithm of the variance on the
ligand concentration following an observation. We inves-
tigate this quantity as a function of Ny and Ny, in Fig-
ure 2. We observe that F o NLO‘/Ng, with a = 3.7 and
B ~ 1 for the observation duration 7' = 100. The depen-
dence on Ng represents the usual law of large numbers
— as more measurements of the concentrations are made,
the average variance of the estimates, F, falls inversely
proportionally with the number of measurements, Ng.
Correspondingly, 8 does not change with 7. The rea-
son for scaling with Ny, is unclear, but it indicates that
decreasing the number of ligands has a dramatic effect
on the ability to estimate them, approaching o =~ 4 at
asymptotically large T. Notice also that F starts deviat-
ing from 0 at Ni,/Ngr ~ 3...10, indicating that the net-
work can estimate nearly 3...10 as many ligand species
as it has the receptors at this 7. Qualitatively similar
results are obtained for other types distributions of the
unbinding rates [20].

Origin of the eigenvalue spectrum. Two related argu-
ments can explain our observations that (i) eigenvalues
are split in groups of size Ng, (ii) the groups are nearly
equidistant from each other on the log space, (iii) higher
diversity of unbinding rates decreases the gap between
the groups. The logarithmic spacing has been studied in
estimation problem in the contexts related to the “sum of
exponentials” [18, 21, 22], which is related to our problem
since the probability distribution of binding events on a
single receptor takes this form. Inspired by this analysis,
we start by writing —log P/ as —log P!’ = JI'J;, where
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Assuming that the bound time duration on the receptor i,

7P are distributed narrowly around some mean value 77

my
(the accuracy of this assumption depends on the tightness
of the distribution of the unbinding rates), we can expand

(Ji)m;a around this mean value. This gives

(Ji)mia = Y (J)& ™D (drm,) 7 (6)
v=1

where (JZ-)((;') represents the v’th derivative of (J;)m;as

evaluated at 7, and dr,, = 7 — 77,



Using the expansion in Eq. (6), we can write J; = V; 4,,
where (4;),, = (Ji)gffl) and V; is the Vandermonde
matrix (Vi) = (drm,)” " [23]. So, log P! = JIJ; =
(A)T(Vi))TV;A;. The eigenvalues of the matrix (V;)TV;
scale as dr(*=1) [18]. We performed simulations with
matrices of this form, namely (VR)”(V R), where R is a
random matrix with elements chosen uniformly at ran-
dom from [0,1], and dr; in the Vandermonde matrices
were chosen uniformly at random from [—0.1, 0.1]. Other
ranges and distributions of values produce qualitatively
similar results. The resulting eigenvalues are shown in
Fig. 3, together with eigenvalues of matrices V' and R, for
comparison. These simulations suggest that the eigenval-
ues of log P! follow the same scaling as of VI'V.

The matrix formed by adding several matrices of the
form — log P! has an eigenvalue spectrum similar to that
of —log P” (compare Fig. 3 to Fig. 1). This is because
the matrices being added (— log P;’) have eigenvalues dis-
tributed roughly exponentially, but the corresponding
eigenvectors are rotated randomly w. r. t. each other.
In high-dimension, such random rotations result in the
eigenvectors corresponding to the eigenvalue of the same
rank being almost orthogonal to each other. This will in-
troduce level splitting, similar to degenerate perturbation
theory in quantum mechanics, so that if IV such matrices
are added, eigenvalues will come in groups of N sets.

We can illustrate the same result with a different, but
related argument. We simulated matrices of the form
(M;)ap = Zfizl(xaxlg)fm, where z,’s and 7’s are gener-
ated randomly, and N > 1 (our conclusions below hold
for N 2 5). This form corresponds to the exponential
terms in Eq. (4). The eigenvalues of these simulated
matrices show an exponential scaling similar to that of
log P!’, cf. Fig. 3. Further, if several such matrices are
added together, M = ). M;, the resulting eigenvalue
spectrum again looks similar to that of —log P” because
of the same level splitting argument for orthogonal eigen-
vectors corresponding to the same eigenvalues. This sug-
gest that the eigenvalue spectrum we see for the ligand-
receptor network is not overly specific to this system, but
results from the particular structure (sum of exponenti-
ated bilinear terms) of the Hessian matrices.

Decoding concentrations from receptor activities. Our
receptor-ligand MIMO inference scheme only measures
the duration of time for which each receptor is bound
and unbound. Moments of these times can be used to in-
fer concentrations of individual ligand species (note that
since binding time distributions are not Gaussian, higher
moments carry additional information that can be used
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FIG. 3: The eigenvalue structure observed for the Hessian for
the ligand-receptor networks has its origin in the Vandermode
matrix, through the expansion of the type (VR)T(VR) (see
text). The first four columns show spectra of RT R, where
R is a random matrix, VTV [18], (VR)T(VR), and a sum of
different (V R)”(V R) matrices. R and V are 40 x 40 square
matrices and 5 such matrices are added for the spectra in
the fourth column. Such matrices are ill conditioned due to
the VTV factor, and their eigenvalue spectra are dominated
by this factor. Notice that the spectrum of the VTV factor
determines the spectrum of (VR)T(VR), and adding many
such matrices results in level splitting. A related argument
is illustrated in the last two columns. We suggest that the
eigenvalues of log P’ result from the exponential part in the
numerator of Eq. (4). Matrix Maox4o in fifth column has
the same structure (M;)as = Yoo _, (zaxs)™, resulting in
exponentially spaces eigenvalues. For these simulations, we
chose 7 uniformly at random in [0 1], z uniformly at random in
[0.9, 1.1], and N = 20. Adding many such matrices together
again results in level splitting (last column).
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where the term outside the integral in the first line is the
probability of ligand « to bind an empty receptor ¢ and
roi€” "™ ig the probability density for such bound in-
terval durations. Here we assumed the binding rates to
be the same for simplicity, which happens when they are
diffusion-limited. Thus each moment is a linear combi-
nation of the ligand concentrations.

One can design biochemical networks that would solve
such a systems of linear equations and infer the concen-
trations [6, 9, 10] (see Supplementary Online Materials).
For example, to estimate the first moment (7;), a re-
porter molecule can be generated only when the receptor
i is bound. The mean reporter amount produced over
time T would be proportional to T', and, assuming many
such molecules are produced over a typical bound inter-



val, noise due to discreteness of the reporter would be
negligible. Similarly, the estimate of the second moment,
(t2) can be obtained from a secondary reporter, which
gets produced with the rate proportional to the instan-
taneous amount of the first reporter, and only while the
receptor is bound. If the production rates are high, dis-
creteness of this reporter will also be negligible. Then
final network readouts can be activated / suppressed by
the reporters to form their appropriate linear combina-
tions representing cq[9].

Discussion. Here we studied a network of ligands and
receptors with crosstalk, such that the number of lig-
ands is larger than the number of receptors. Using the
MAP solution based on time series of receptor binding
and unbinding, we showed that estimation of ligands in
this context, which could have been underdetermined,
is, in fact, possible. Further the diversity of unbind-
ing rates improves the ability of the network to estimate
many concentrations. We noticed that the MAP esti-
mation results in a Hessian with a spectrum with a uni-
versal properties. Specifically, the eigenvalues come in
subsets whose size is equal to the number of receptors in
the network, and these subsets are almost exponentially
distributed. This observation can be employed by bio-
logical systems to design chemical kinetics schemes that
would estimate concentrations of ligands from receptor
activities irrespectively of the details of binding and un-
binding rates in the network. Thus our theory makes
specific predictions about the structure of molecular net-
works downstream of cell surface receptors, which should
hold irrespective of the specific details of MIMO sensory
system. It predicts the number of eigenvalues that would
be above the cutoff set by the prior, and hence can be
estimated. Alternatively, it predicts the time it will take
to estimate all eigenvalues. Whether biological systems
follow these predictions remains to be seen. Finally, sim-
ilar to Ref. [18], we traced some aspects of the univer-
sal spectrum of the Hessian to the properties of Vander-
monde matrices that enter the inference problem. This
universality across biophysical and general statistical in-
ference problems suggests that our findings will be appli-
cable more generally, beyond ligand-receptor molecular
networks, including problems in neuroscience and artifi-
cial sensory networks.
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