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We present a comprehensive theory of the dynamics and fluctuations of a two-dimensional sus-
pension of polar active particles in an incompressible fluid confined to a substrate. We show that,
depending on the sign of a single parameter, a state with polar orientational order is anomalously
stable (or anomalously unstable), with a nonzero relaxation (or growth) rate for angular fluctuations,
not parallel to the ordering direction, at zero wavenumber. This screening of the broken-symmetry
mode in the stable state does lead to conventional rather than giant number fluctuations as argued
by Bricard et al., Nature 503, 95 (2013), but their bend instability in a splay-stable flock does not
exist and the polar phase has long-range order in two dimensions. Our theory also describes confined
three-dimensional thin-film suspensions of active polar particles as well as dense compressible active
polar rods, and predicts a flocking transition without a banding instability

Biological systems and their artificial analogues, such
as vibrated granular layers [1] and self-propelled rollers
[2], are powered by energy supplied directly at the level of
constituent particles, which leads to macroscopic stresses
and currents. “Active hydrodynamics” [3–8], which de-
scribes how nonequilibrium currents and forces affect the
orientational order of anisotropic units, presents a gen-
eral framework to study the large-scale dynamics in such
systems.

Active phases frequently defy expectations rooted in
equilibrium physics. Motile XY spins [3–5, 9] on a sub-
strate display long-range orientational order even in two
dimensions, and anomalous number fluctuations with the
standard deviation in number N of particles in a region
growing more rapidly than

√
N [3, 9–11]. Enhancing the

noise in this system yields an isotropic phase via an insta-
bility towards an inhomogeneous, polarised banded phase
ultimately rendering the transition discontinuous [12, 13].

Much of our understanding of polar active systems [9,
12, 13] comes from studies that ignore any ambient sol-
vent, but biological systems are typically suspensions in
an incompressible fluid that mediates long-range hydro-
dynamic interactions. This aspect is well understood
for bulk suspensions [3, 14, 15], but subtleties arise for
systems confined to two dimensions by walls or adsorp-
tion on substrates. The Stokesian hydrodynamic interac-
tion, although screened at leading order by the bounding
surfaces, leaks through in a weakened form through the
inescapable nonlocal constraint of incompressibility [16–
19]. Although active variants of incompressible magnets
[20] have been considered before [21, 22], this does not di-
rectly relate to the physics of polar suspensions in which
only the joint density of the active particles and fluid is
incompressible but the concentration of the polar parti-
cles, while conserved, may fluctuate.

In this Letter we present a general theory of a suspen-
sion of motile polar particles in a thin film of incompress-
ible fluid, or equivalently a polar active gel [3] bounded
by planar solid walls, taking the effects of incompress-
ible flow correctly into account. Our main results are
(i) Through the interplay of motility and incompressibil-
ity, a flock is stable for all wavevector directions, with
deformations of the orientational broken-symmetry vari-
able relaxing on a finite, non-hydrodynamic time-scale
as the wavenumber q → 0 for almost all wavevector di-
rections. This contradicts the claimed generic bend in-
stability [2] of confined incompressible flocks, and is, of
course, contrary to conventional expectations [24] of a
vanishing relaxation rate, in the long-wavelength limit,
for Nambu-Goldstone modes [25]. The “gapping” of the
orientational Nambu-Goldstone mode due to the active
forcing of the velocity field of an incompressible fluid is
closely akin to Anderson’s original formulation [26] of
the mechanism [27] for granting “mass” to such modes
through the long-range character of the Coulomb inter-
action. (ii) Motility and incompressibility suppress the
instability towards the inhomogeneous banded state that
generically occurs in compressible polar systems between
the ordered and the disordered states implying that a di-
rect transition from an isotropic state to a homogeneous
flock is possible, without the intervention of a banded
phase. (iii) The variance of orientational fluctuations is
non-divergent for q → 0, with a correlation length that
is finite for any nonzero motility. As a consequence num-
ber fluctuations are normal, with variance proportional
to the mean [29]. (iv) Our main results remain correct up
to very large length scales even in weakly compressible
systems [1, 9, 23]. Our theory is relevant to all current
experiments on planar confined active polar suspensions
[31–33], which we illustrate by showing how it emerges
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from the averaging of the dynamics of three-dimensional
polar fluid confined in one direction.

We start by constructing the general dynamical equa-
tions for the polarisation p(r, t) and the concentration
c(r, t) of a collection of active units suspended in a fluid
with the total velocity field of the particles and the fluid
being u(r, t), where r is a two-dimensional position vec-
tor. The joint density ρ of the particles and the fluid is
incompressible i.e. ρ̇ = 0 implying ∇ · u = 0. In the
absence of activity and fluid flow, the equilibrium relax-
ation derives from a Landau-de Gennes free energy, which
we write in the single Frank constant approximation for
simplicity [34]:

H =

∫
r

[
α(c)

2
|p|2 +

β

4
|p|4 +

K

2
|∇p|2 + γp · ∇c+ c ln c

]
,

(1)
where the sign of α(c) determines the stability of the
isotropic, flow-less phase. A negative α(c) gives rise to a
non-zero polarization, which remains bounded due to the
β-term and whose heterogeneities are suppressed by the
elastic constant K. The γ-term describes the tendency of
the polarity to align along or opposite to concentration
gradients [35], while the last term is characteristic of an
ideal solution (setting kBT = 1).

To lowest order in gradients, the generic dynamical
equation for p is

∂tp = Λu− δH
δp

, (2)

where the coefficient Λ, whose sign depends on the de-
tailed shape of a polar particle [1, 18], aligns the polar-
isation vector with the local suspension velocity and is
specific to systems in contact with a substrate [1, 18, 36].
We treat it as independent of the direction of p, which
does not qualitatively modify our conclusions [37]. The
coefficient in front of the second term of the right-hand
side of Eq. (2) is set to one through a proper choice of
time units. Advective and self-advective terms, which are
discussed in [37] are not displayed in (2) since they turn
out to be less relevant than the terms retained in (2) even
in the ordered phase. Ignoring inertia, Newton’s second
Law reduces to force balance which to lowest order in
gradients is

Γu = υp−∇Π− Λ
δH
δp

, (3)

where Γ is the coefficient of damping by the substrate and
Π is the pressure that enforces incompressibility. υp de-
notes the active polar force-density of the particles. The
final term on the right-hand-side of Eq. (3) is required
to ensure that the steady-state in the limit of vanishing
activity reduces to the equilibrium distribution. Finally,
the continuity equation for the concentration field is

∂tc+ u · ∇c = −∇ ·
(
υpcp−Dcc∇

δH
δc

)
, (4)

where vpcp denotes an active concentration current due
to the motility of the particles [3–5, 9, 45] [30]. The final
term leads to standard diffusive dynamics. Equations
(2-4) are similar to the ones for two-fluid polar active
systems [1], with the only difference being the incom-
pressibility constraint.

To determine the stability of a homogeneous isotropic
(|p| = 0) state, we perform a linear stability analysis of
Eqs. (2) and (3). For Λυ > 0, the state is destabilised
when [1]

α̃ = α(c)− Λυ

Γ + Λ2
= α(c)− w < 0. (5)

Thus, for υ > 0, a positive alignment parameter Λ rein-
forces the moving particles’ alignment, thereby favouring
the instability of the homogeneous disordered phase as in
[18] (also see [37]). Following this instability, a homoge-
neous ordered phase with p = p0x̂, c = c0 and u = u0x̂
may form, where p2

0 = |α̃/β| and u0 = (w/Λ)p0. To
study its stability, we project Eq. (3) transverse to the
wavevector q to eliminate the velocity field. Introduc-
ing the polarisation fluctuations δp = (p0 + δp)(cos θx̂+
sin θŷ) − p0x̂, we obtain equations for small deviations
from the ordered state: ∂t(δc, δp, θ) = M · (δc, δp, θ).
The three eigenvalues of matrix M characterise relax-
ation modes of the system. Naively, the presence of a
conservation law for the concentration and broken rota-
tion symmetry would suggest that two of these modes
should be ‘hydrodynamic’, i.e., the associated eigenval-
ues vanish in the q→ 0 limit. A detailed calculation how-
ever reveals that this is not correct [37] in the presence
of the motility-induced long-range interactions mediated
by fluid incompressibility. Such long-range interactions
suppress fluctuations in the ordered state, as in dipolar
XY models [20, 46] or superconductors [26]. Here, they
imply that our system has only one hydrodynamic mode
associated with the conserved concentration field with
relaxation rate κc ∝ q2, the stability of which we dis-
cuss later. The remaining two eigenvalues, which govern
the dynamics of the polarization fluctuations, are non-
hydrodynamic, and go to a finite limit as q→ 0:

κ±(φ) = −1

2

[
w + 2|α̃|

(
1 +

Λ2

Γ
sin2 φ

)
±√[

w + 2|α̃|
(

1 +
Λ2 sin2 φ

Γ

)]2

− 8|α̃|w sin2 φ

(
1 +

Λ2

Γ

) ,
(6)

where φ is the angle between q and x̂. For w < 0, one
of the eigenvalues is always positive, implying a generic
instability. For w > 0, both κ+ and κ− are stabilising,
though one of the two eigenvalues (κ−) vanish for fluc-
tuations with wavevectors precisely along the ordering
direction. This implies that all components of the polari-
sation vector have a finite exponential-decay time to their
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steady state value even in infinite systems, except for per-
turbations purely in ordering direction (i.e., φ = 0), for
which κ−(0) ∼ −Kp(0)q2 (the somewhat cumbersome
form of Kp(φ) is displayed in [37]). Crucially, Kp is not
generically negative along any wavevector direction in-
cluding along x̂ even at arbitrarily high activities [10]. Of
course, Kp can turn negative along x̂ for certain choices
of phenomenological parameters, leading to an instability
of the polar phase. However, in this paper we focus on
the case in which Kp is stabilising, leading to exception-
ally stability of the ordered phase to polarisation fluctua-
tions (since these fluctuations decay exponentially along
almost all directions), a consequence of the interplay of
active motility υ, passive velocity response through Λ and
incompressibility-induced long-range interactions.

While Eq. (6) demonstrates that two of the eigenvalues
of the dynamical matrix M are stabilising, its third and
only hydrodynamic eigenvalue κc(φ) also has to be nega-
tive for the existence of a homogeneous polar phase (see
[37] for the expression of κc deep in the ordered phase).
Close to the transition (i.e., for α̃→ 0−), this eigenvalue
is known to always turn positive for φ = 0 in dry com-
pressible systems [3], implying a generic instability to-
wards a non-homogeneous, banded phase [12, 13, 47, 48].
In our suspension of active particles in an incompressible
fluid however, the real part of this eigenvalue, in the limit
α̃→ 0, becomes isotropic and does not change sign sup-
pressing this instability for all −γυp < Dcw/c0, which is
simply the condition for the stability of the homogneous
flock:

lim
α̃→0

κc(0) = −
[
Dc +

c0γυp
w

]
q2. (7)

As a result, the transition to the ordered state in this
system may not necessarily proceed via a banded phase
unlike in dry flocks.

To determine the effect of noise on the ordered phase of
our system, we first compute the static structure factor of
angular fluctuations in the presence of a zero-mean Gaus-
sian white noise ξ(r, t) in Eq. (2) with 〈ξ(r, t)ξ(r′, t′)〉 =
2Bδ(r − r′)δ(t − t′). In the aligned phase, at small
wavevectors, this yields

lim
q→0

S(q) = lim
q→0
〈|θ(q)|2〉 =

Bq2

Kp(0)q4
x + wq2

y

(8)

The integral of (8) over wavevectors q converges, imply-
ing a finite amplitude for the angular fluctuations and
thus the existence of a long-range ordered aligned po-
lar phase. Furthermore, the dynamic structure factor
of angular fluctuations [37] is also singularly modified
due to the wavevector-independent relaxation rate – un-
like usual systems which spontaneously break a continu-
ous symmetry, it has no zero-frequency pole in the zero
wavenumber limit except when this limit is approached
along q = qx̂.

To verify that these conclusions, which we obtained by
linearising Eqs. (2-4), is not modified by the inclusion
of nonlinearities, we consider the simple case of a flock
in which number is not conserved [49]. In this simple
case, our model exactly maps onto the polar flock with
constraint ∇ · p = 0 studied in Ref. [21] [37]. This map-
ping ultimately yields exact equal-time exponents of the
ordered phase via a transformation to the KPZ equa-
tion [37]. This implies that our model, in which there is
no explicit constraint on p, also has long-range order in
two dimensions with the same roughness and anisotropy
exponents as in Ref. [21]. This relation between the non-
linear theory of polar swimmers without number con-
servation in incompressible polar fluid and a theory of
a suspension of polar active particles with ∇ · p = 0 is
unusual; for instance, an apolar system in an incompress-
ible fluid [10] does not correspond to a theory in which
∇∇ : Q = 0, where Q is the apolar order parameter. In
addition, removing the condition of fixed concentration
introduces additional relevant nonlinearities and spoils
the mapping, likely resulting in an ordered phase with
distinct behaviour.

Beyond the existence of an ordered phase in two di-
mensions, a hallmark of active matter physics is the pos-
sibility of anomalous number fluctuations. To assess their
existence in our system, we calculate the static-structure
factor of density fluctuations. We find that the number
fluctuations scale as

√
N as in equilibrium systems [37],

despite the presence of an active particle current ∝ p
in Eq. (4). Indeed, since all components of p have fast,
non-hydrodynamic relaxation rates [50], the polarisation
aligns with any gradient in concentration i.e. p ∼ ∇c.
Therefore, the active ∝ p current is equivalent to a pas-
sive diffusive current, implying equilibrium-like statistics
for the concentration fluctuations. This is a result of
the non-zero restoring torque for orientational distortions
even in the limit of long wavelengths [29].

While the above results are directly relevant for the
experiments on single layers of motile particles (such
as a more strongly confined variant of [2, 28], which
would have an effectively two-dimensional incompress-
ibility constraint), our theory also describes the effective
thickness-averaged dynamics of three-dimensional films
of polar active particles in an incompressible fluid of lat-
eral dimension L, confined along the z direction over
a length scale h � L. To demonstrate this, we de-
scribe the three-dimensional polar fluid by the three-
dimensional polarisation vector p̄(x̄, t) = (p̄⊥, p̄z), veloc-
ity ū(x̄, t) = (ū⊥, ūz) and particle number c̄(x̄, t), where
x̄ is a three-dimensional position vector, and p̄⊥ and p̄z
and ū⊥ and ūz are the projections transverse to and
along the confining direction of the three-dimensional
polarisation and velocity respectively. We further de-
note the three-dimensional gradient by ∇̄. The dynam-
ics is described using a standard set of constitutive equa-
tions [51, 52], on which we use the lubrication approxima-
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tion of thin-film flows [53] to project our equations in two
dimensions, exploiting the fact that the gradients along
z are large, namely ∂z̄ = O(1/h) � ∂x̄, ∂ȳ [37]. The
thickness average of the three-dimensional viscous force
density η̄∇̄2ū, with η̄ being the viscosity of the three-
dimensional fluid, yields the friction-like force −Γu in
Eq. (3) to lowest order in h/L, where Γ = 12η̄/h2 and u
is the thickness-averaged velocity in the xy plane, with
the three-dimensional incompressibility condition trans-
lating into ∇ · u = 0. Beyond this standard viscous
force and other passive terms reminiscent of classical hy-
drodynamics, our three-dimensional dynamical equations
feature two three-dimensional active polar force densi-
ties, namely ∇̄2p̄ and ∇̄ · (p̄p̄) [52]. The former char-
acterises the fore-aft symmetry around, and hence the
motility of, an elementary active object. Upon thick-
ness averaging it leads to the two-dimensional propul-
sive force ∝ p of Eq. (3), where p is the thickness av-
erage of the transverse polarization p̄⊥. The latter ac-
tive term determines the contractile or extensile char-
acter of active units, and leads to a force ∝ ∇ · (pp),
which is subdominant at large lateral scales and is thus
not included in our two-dimensional equations. We simi-
larly obtain Eq. (2) for the polarisation field by choosing
walls forcing a non-trivial z̄-dependence on the polarisa-
tion p̄ through the boundary conditions p̄z̄=0 = ẑ and
p̄z̄=h = −ẑ. Polarization is generically affected by shear,
which we describe through the symmetric strain rate ten-
sor Ū = (1/2)[∇̄ū + (∇̄ū)T ]. This gives rise to two dif-
ferent contributions to ∂tp̄ in the three-dimensional po-
larization equation, namely ∇̄ · Ū = (∇̄ · ∇̄)ū which de-
scribes the alignment of the polarisation vector with with
the local gradients of the shear rate, and p̄ · Ū, which de-
scribes its alignment to a local shear flow. Again using
lubrication arguments, we obtain the first term on the
right-hand-side of Eq. (2) from the former. The lat-
ter leads to the usual flow-alignment, which aligns the
polarity with the two-dimensional velocity gradient and
due to its subdominance is not included in (2). Finally,
the thickness-averaged concentration equation (4) is ob-
tained by imposing no-flux boundary condition on the
three-dimensional continuity equation for c̄.

While strictly valid for incompressible systems, our
conclusions regarding the non-hydrodynamic relaxation
of angular fluctuations and non-giant number fluctua-
tions are also applicable up to large length scales in
weakly compressible systems such as fluid-less collections
of motile particles or active polar rods in a dense bead
medium [1]. To characterize such systems, we reintro-
duce the dynamics of their overall density field ρ which
satisfies the conservation equation ∂tρ = −∇ · (ρu). We
assume a linear relation between small changes in the
pressure Π and the density ρ: Π(ρ)−Π(ρ0) ' δρ/(χρ0),
where χ is the fluid’s compressibility, δρ = ρ − ρ0, ρ0 is
the average density and consider a system deep in the
ordered phase, implying a fast relaxation of δp to zero.

χ1/2  ~
1

1

2

Re(−κ'+/w)

Re(−κ'−/w)

wavevector q
~

re
la

x
a

tio
n

 r
a
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FIG. 1. A log-log plot of the dimensionless decay rates for the
two eigenmodes associated with the coupled dynamics of the
total density and angular fluctuations in a weakly compress-
ible system [Eq. (9)]. While both modes display a diffusive
(slope 2) relaxation at low dimensionless wavevector q̃, tak-
ing the dimensionless compressibility χ̃ to zero shifts the blue
curve to the left, implying that the relaxation rate associ-
ated with any finite q̃ goes to infinity. Meanwhile, the second
relaxation rate (black curve) develops a wide q̃-independent
plateau, mimicking the non-hydrodynamic relaxation rate as-
sociated with a truly incompressible system.

Here, we consider only the coupled dynamics of ρ and
θ described by Eqs. (2-3) (consideration of fluctuations
in c does not change our qualitative result [37]). Defin-
ing the non-dimensional compressibility χ̃ = χKpρ0Γ,
we first check the fate of the relaxation rate of angular
fluctuations in our weakly compressible fluid (χ̃ � 1).
Focussing on the direction φ = π/2, which displays the
strongest incompressibility-induced stabilization in the
incompressible case, we calculate the eigenvalues associ-
ated with the coupled density and orientational dynamics
(δρ, θ):

κ′± = −wq̃
2

2χ̃

[
1 + χ̃±

√
(1− χ̃)2 − 4χ̃

q̃2

]
, (9)

with q̃ = q
√
Kp/w. κ′+ ∼ −wq̃2/χ̃ diverges as χ̃→ 0 (see

Fig. 1), indicating that the pressure homogenises quickly
in a nearly-incompressible medium and the orientation θ
relaxes at a rate κ′−. In an incompressible system, this
relaxation rate went to a finite limit as q → 0. This is
not strictly the case here, as κ′− ∝ −q̃2 for wavevectors
q̃ < χ̃1/2. However, κ′− has a plateau for intermediate
wavevectors χ̃1/2 < q̃ < 1 that extends to q → 0 for
χ̃ → 0. As the smallest wavevector realisable in a sys-
tem of size L is π/L, a weakly compressible polar fluid
is indistinguishable from a truly incompressible one for
L � 1/

√
χ̃, and is, therefore, deprived of giant-number

fluctuations, while larger systems display it.
While our discussion has so far focused on polar par-

ticles that align with the local flow (w > 0), consistent
with existing experiments [1, 2], systems with w < 0 are
conceivable [54]. One possibility would be particles that
point opposite to the local flow (Λ < 0) while moving
along their polarity (υ > 0). In this case the homo-
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geneous ordered phase is unstable and all perturbations

with wavenumber smaller than
√
K/(|w| sin2 φ) grow ex-

ponentially. This instability, which leads to a finite cor-
relation length for the polarisation field, is distinct from
the one that leads to a polarised, concentration-banded
state in dry active systems [12]. Nevertheless, since the
polarisation correlation diverges precisely along the or-
dering direction, a banded chevron state with counter-
propagating polar lines may be the steady state in this
case.

The analysis presented here clarifies theoretical expec-
tations on the structure of number fluctuations of motile
systems in confined incompressible fluid, which have been
a source of confusion [2]. It moreover provides a frame-
work to analyze the dynamics of numerous quasi-2D bio-
logical systems, which are almost invariably immersed in
an incompressible fluid, from the scale of the intracellular
medium [31] to that of crawling cell layers [55]. Its pre-
dictions of non-hydrodynamic relaxation, the possible ab-
sence of a banding phase at the disorder-order transition
and normal number fluctuations should be testable in any
of these contexts or in artificial chemotactic colloids [56].
Our results are also largely applicable to weakly com-
pressible systems such as dense granular layer of polar
rods or dense mixtures of rods and beads [1]. From a
theoretical standpoint, our work establishes that hydro-
dynamic interactions singularly alter equal-time as well as
time-displaced correlations of the orientation even when
the long-wavelength fluctuations of the fluid momentum-
density are damped by friction with a substrate via a
non-equilibrium analogue of the classic Anderson-Higgs
mechanism. Alongside the breaking of the Hohenberg-
Mermin-Wagner theorem [4, 9] and existence of anoma-
lously large fluctuations [3, 5, 9], this finding constitutes
another striking violation of equilibrium expectations in
active matter.
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