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Quantum critical points often arise in metals perched at the border of an antiferromagnetic order.
The recent observation of singular and dynamically scaling charge conductivity in an antiferromag-
netic quantum critical heavy fermion metal implicates beyond-Landau quantum criticality. Here
we study the charge and spin dynamics of a Kondo destruction quantum critical point (QCP),
as realized in an SU(2)-symmetric Bose-Fermi Kondo model. We find that the critical exponents
and scaling functions of the spin and single-particle responses of the QCP in the SU(2) case are
essentially the same as those of the large-N limit, showing that 1/N corrections are subleading.
Building on this insight, we demonstrate that the charge responses at the Kondo destruction QCP
are singular and obey ω/T scaling. This property persists at the Kondo destruction QCP of the
SU(2)-symmetric Kondo lattice model.

Introduction. Quantum criticality is of extensive cur-
rent interest to a variety of strongly correlated systems
[1–4]. Within the Landau framework, phases of matter
are differentiated by the spontaneous breaking of global
symmetry and its associated order parameter, and quan-
tum criticality is described by the fluctuations of the
order parameter. For a continuous transition between
antiferromagnetic to paramagnetic phases at T = 0, the
corresponding singularity is associated with the slow fluc-
tuations of the staggered magnetization [5].

Antiferromagnetic (AF) heavy fermion metals provide
a prototype setting to elucidate the quantum critical
properties and the associated strange-metal physics. In
these systems, strong correlations manifest themselves
through the development of local moments out of their
f -electrons. The local moments interplay with a band
of conduction electrons by an AF Kondo coupling, and
interact with each other via an RKKY coupling. In the
process of understanding heavy fermion quantum critical-
ity, it has been emphasized that the Landau framework,
in the form of a spin-density wave (SDW) QCP [5–7], can
break down in a fundamental way. The beyond-Landau
physics has been characterized in terms of the notion of
Kondo destruction [8–10]. The distinction of the Kondo
destruction quantum criticality from its SDW counter-
part reflects the amplitude of the Kondo singlet going
to zero as the system approaches the AF QCP from the
paramagnetic phase. Correspondingly, the quasiparticle
weight vanishes at the QCP and the Fermi surface jumps
across the transition.

In the context of critical phenomenon, the Kondo de-
struction QCP epitomizes the effect of quantum entangle-
ment on criticality singularity. From the perspective of
strongly correlated electrons, it corresponds to a partial
Mott transition, i.e. the localization of the 4f -electrons.
Such an electronic localization-delocalization transition
links quantum critical heavy fermion metals to other

strongly correlated systems. For instance, in the cuprate
superconductors near optimal hole-doping, Hall measure-
ments implicate an electron localization-delocalization
transition [11]. In an organic superconductor, such mea-
surements have suggested a similarly rapid change in
the carrier density [12]. Finally, in the twisted bilayer
graphene, quantum oscillation measurements indicate a
small Fermi surface when the system is doped away from
the half-filled correlated insulator [13].

In quantum critical heavy fermion metals, there is ex-
tensive experimental evidence for the Fermi surface jump
[14–16] as well as the emerging Kondo destruction energy
scale [14, 17]. One of the early experimental clues for
anomalous heavy fermion quantum criticality came from
the observation of ω/T scaling together with an anoma-
lous value for the critical exponent in the spin dynamics
[18]. The Kondo destruction quantum criticality has pro-
vided a natural understanding of such singular dynamic
scaling in the critical spin response [8, 19].

Recently, terahertz spectroscopy measurements in a
quantum critical heavy fermion metal have discovered
a charge response that is singular and satisfies ω/T scal-
ing [20]. This is inconsistent with an SDW QCP, where
only the response of antiferromagnetic order parameter
should be singular and the charge correlations are ex-
pected to be smooth. A critical destruction of the Kondo
effect, however, involves the localization-delocalization of
the f -electrons at the QCP. Thus, the charge degrees of
freedom are an integral part of the quantum criticality
leading to the suggestion of a singular response in the
charge channel. Indications of a singular charge response
have appeared in a dynamical large-N study (see below
for the definition of N) for a Kondo destruction QCP
of the Bose-Fermi Kondo model (BFKM) and in related
settings [21–24], with the BFKM being associated with
the Kondo lattice model within the approach of extended
dynamical mean field theory (EDMFT). In light of the
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recent experimental development, theoretical studies at
the physical N = 2 case are called for.

In this letter, we demonstrate for the first time that the
charge response of the Kondo destruction QCP is singu-
lar and has dynamical ω/T scaling in the physical N = 2
case. Our result is facilitated by analyzing the BFKM
at both N = 2 and a dynamical large-N limit, which
shows that 1/N corrections to the scaling quantities are
subleading but not dangerously irrelevant. Based on this
insight, we carry out calculations on both the BFKM and
the Kondo lattice model. Our results provide the theoret-
ical basis to understand the striking recent measurement
of singular charge response at an antiferromagnetic heavy
fermion QCP [20].

BFKM with SU(2) symmetry. We will study the quan-
tum critical properties of the spin rotationally invariant
BFKM [25–28] and related Bose-Fermi Anderson model
(BFAM), compare the results determined for the SU(2)-
invariant case (N = 2) with those obtained in the dy-
namical large-N limit. For the SU(2) case, we will study
the BFAM defined by the following Hamiltonian:

HBFA =
∑
σ

εdd
†
σdσ + Un↑n↓

+
∑
pσ

(
V d†σcpσ + h.c.

)
+
∑
pσ

εp c
†
pσ cpσ

+ g
∑
p

Sd ·Φ +
∑
p

wp Φ †p ·Φp . (1)

Here, strongly correlated d-electrons, with the Hubbard
interaction U defined in terms of nσ = d†σdσ and in the
presence of a particle-hole symmetry, εd = −U/2, hy-
bridize with the conduction c-electrons with an ampli-
tude V . For the interactions we consider, the hybridiza-
tion amounts to a Kondo-coupling of the d-electron spin,
Sd = d†στσσ′dσ′ , with τσσ′ being the three component
Pauli matrices, to the fermionic c-bath. Simultaneously,
the d-electron spin is coupled to a vector Φ-bosonic bath;
we have defined Φ =

∑
p(Φp + Φ †−p). We assume a flat

fermionic density of states

ρf (ε) =
∑
p

δ(ε− εp) = ρ0Θ(D − ε)Θ(D + ε) , (2)

where Θ is the Heaviside function. This defines a hy-
bridization function Γ(ε) = Γ = πρ0V

2 for ε ∈ (−D,D).
We choose D = 1 as the energy unit. For the bosonic
bath, we consider a subohmic spectrum (s < 1)

ρb(ω) =
∑
p

δ(ω − ωp) = K0ω
se−ω/ΛΘ(ω) . (3)

where Λ is a cutoff frequency. The model is studied us-
ing a continuous-time Quantum Monte Carlo (CT-QMC)
method developed in Ref. [29] (see also Refs. [30–34]).

BFKM in dynamical large-N limit. The BFKM in
the dynamical large-N limit is defined in terms of the

Hamiltonian:

HBFK = (J/N)
∑
α

S · sα +
∑
p,α,σ

εp c
†
pασcpασ

+ (g/
√
N)S ·Φ +

∑
p

wp Φ †p ·Φp. (4)

As in the SU(2) case, a local moment S is coupled
to a fermionic and a vector bosonic bath, cpασ and
Φp respectively. The spin symmetry is SU(N), with
σ = 1, . . . , N , and the channel symmetry is SU(κN),
with α = 1, . . . , κN (Ref. [35, 36]). Here, Φ has N2 − 1
components. The density of states is likewise given
by Eqs. (2,3). The bare bath Green’s functions are
G0 = −〈Tτ cσα(τ)c†σα(0)〉0 and GΦ = 〈TτΦ(τ)Φ†(0)〉0.

We use a fermionic spinon representation, Sσσ′ =
f†σfσ′ − δσ,σ′/2, enforcing the constraint of the Hilbert

space
∑N
σ=1 f

†
σfσ = N/2 by a Lagrange multiplier iµ.

The conduction electrons are in the fundamental rep-
resentation of the SU(N)×SU(κN) group. A dynam-
ical field Bα(τ) is used to decouple the Kondo cou-

pling, (J/N)
∑
σσ′

(
f†σfσ′ − δσ,σ′/2

)
c†ασ′cασ, leading to

a B†α
∑
σ c
†
ασfσ/

√
N interaction. The B-field is charge-

carrying, given that the spinon field f is charge-neutral.
Taking the large-N limit with κ being kept fixed leads

to the following saddle-point equations:

G−1
B (iωn) = 1/J − ΣB(iωn); ΣB(τ) = −G0(τ)Gf (−τ)

G−1
f (iωn) = iωn − λ− Σf (iωn);

Σf (τ) = κG0(τ)GB(τ) + g2Gf (τ)GΦ(τ), (5)

which are supplemented by the following constraint:

Gf (τ = 0−) = (1/β)
∑
iωn

Gf (iωn)eiωn0+

= 1/2. (6)

These equations are solved on the real frequency axis.
For definiteness, we will fix κ = 1/2.
Critical properties – dynamical large-N limit vs.

SU(2). In the large-N limit, a QCP separates the strong-
coupling Kondo phase from a Kondo destruction critical
phase. In the SU(2) model, for the value of s we focus
on, the Kondo destruction phase also corresponds to a
critical phase [29]. Comparing the critical properties of
the dynamical large-N limit with the SU(2) model allows
us to assess the degree to which 1/N corrections modify
the leading quantum critical singularities.

We first consider the local spin susceptibility, χ, at
the QCP and in the Kondo destruction phase. In the
dynamical large-N limit,

χ(τ) = −Gf (τ)Gf (−τ) . (7)

In the SU(2) case, χ(τ) is directly calculated from the
CT-QMC procedure. The result for the dynamical large-
N calculations for s = 0.6 (i.e., ε = 1 − s = 0.4) is
shown in Fig. 1(a). We find that χ as a function of the
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FIG. 1: Local spin susceptibility χ(τ) at the QCP of (a) the
dynamical large-N limit (purple dashed line represents the
analytically obtained leading T = 0 behavior) and (b) the
SU(2) case; and electron Green’s function G(τ) at the QCP
of (c) the dynamical large-N limit and (d) the SU(2) case. In
(a,c), the temperature T is measured in D. In (b,d), β = 1/T .

imaginary time, τ , collapses in terms of πT/ sin(πτT ),
where T is the temperature, with a power-law exponent η
that is less than 1. This implies a singular spin response:
The static local spin susceptibility diverges in the T → 0
limit, and so does the T = 0 local spin susceptibility as
ω → 0; both divergencies have the power-law exponent
of 1 − η. The exponent η is numerically fit to be 0.41.
This value is in excellent agreement with the analytical
result, η = ε = 0.4, that can be extracted from the saddle
point equations (5, 6) in the zero-temperature limit [21].

As a comparison, we show in Fig. 1(b) the CT-QMC
result for χ(τ) at the QCP of the SU(2) BFAM, again
for s = 0.6. Unlike the large-N limit where the real-
frequency analysis is carried out over many (more than
10) decades, here the dynamical range is more lim-
ited. Still, by using the algorithm recently developed
in Ref. [29], we are able to reach low-enough tempera-
tures and a sufficiently large dynamical range in τ to
determine the scaling properties in the quantum critical
regime. We see from Fig. 1(b) that the scaling function
is also a power-law of πT/ sin(πτT ). The fitted exponent
is 0.38, which is quite close to the large-N result (0.41
as calculated and 0.4 as expected). We attribute the dif-
ference to the subleading corrections that are amplified
in the CT-QMC calculation, given the narrower scaling
range being accessed.

We now turn to a parallel study of the d-electron

(a) (b)

FIG. 2: Singular charge response of the B-field calculated in
the dynamical large-N limit (a) and extracted in the SU(2)
case (b) obtained at the QCP. In (a), the temperature T is in
unit of D. In (b), β = 1/T .

Green’s function G(τ). In the large-N limit, it is de-
termined as follows:

G(τ) = Gf (τ)GB(−τ) . (8)

For the SU(2) case, G(τ) is again directly calculated from
the CT-QMC procedure. The results for the QCP is
shown for the large-N limit in Fig. 1(c), with the expo-
nent being 0.99, very close to the value analytically ex-
pected, which is 1. In addition, for the SU(2) case shown
in Fig. 1(d), within numerical accuracy, both the criti-
cal exponent and the scaling functions are essentially the
same as the large-N limit.

Critical charge and spin responses and ω/T scal-
ing. The above calculations and comparisons lead to
an important new insight. For the Kondo destruction
QCP, the leading critical singularities determined in the
dynamical large-N limit applies to finite N including
N = 2. This implies that, while the 1/N -corrections
modify the location of the quantum critical point, they
preserve its Kondo-destruction nature and, equally im-
portant, make only subleading contributions to the criti-
cal singularities. Analyzing the Feynman diagrams shows
that the processes at the 1/N and higher orders are ir-
relevant [35]. In addition, the 1/N corrections cannot
be dangerously irrelevant: Given that the susceptibilities
at the large-N limit satisfy ω/T scaling (see below), the
subleading corrections will preserve the leading singular-
ities as a function of not only the frequency but also the
temperature. This insight leads to a remarkable simpli-
fication, because it implies that we can use the results
determined in the dynamical large-N limit to gain an
understanding about the critical properties at realistic
Kondo destruction QCPs at finite N .

We start from the response of the charge-carrying B-
field, which is expected to be singular [21]. In Fig. 2(a),
we show that it too is a power law of πT/ sin(πτT ), with a
critical exponent being very close to the value determined
analytically for the leading singularity, i.e. 0.8 (which
corresponds to 1− ε/2).
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(a) (b)

FIG. 3: ω/T scaling at the QCP. (a) The charge response,
showing the spectral function of the B-field and (b) the spin
response, showing the spectral function of S, both in the dy-
namical large-N limit. The temperature T and ω are in unit
of D.

The lack of 1/N -corrections to the leading critical sin-
gularities at the Kondo destruction QCP suggests that
the structure of Eqs. (7,8) is still valid at finite N .
The form of the scaling functions simplifies these equa-
tions into χ(τ) = [Gf (τ)]2 and G(τ) = Gf (τ)GB(τ) [for
τ ∈ (0, β)]. We therefore define

G′B(τ) =
G(τ)√
χ(τ)

(9)

as a measure of the singular correlator of the charge-
carrying B-field. The τ -dependence of G′B from our
CT-QMC calculation of the SU(2) BFAM is presented
in Fig. 2(b). Both the critical exponent and the scaling
function are, within the numerical uncertainty, the same
as for the large-N result. This particular form of scaling
function in the τ -dependence, with its power-law expo-
nent being less than 1, implies a singular dependence on
ω and T with an ω/T scaling.

Thus, we have established that the Kondo destruction
QCP displays a singular response in both charge and spin
channels. The real-frequency dependences of the spectral
functions of both the charge-carrying B-field and the spin
S are shown to collapse in ω/T in Figs. 3(a,b). Each
quantity satisfies ω/T scaling over a dynamical range of
more than 15 decades.

Kondo lattice model. Since the lattice model is
more relevant to the real materials, we study the SU(2)-
symmetric Kondo lattice model. The model itself is stan-
dard, as is the EDMFT approach [19]. However, sys-
tematic calculations for the SU(2)-symmetric case has
only become possible recently with the advent of the
SU(2) CT-QMC method [29]. Within EDMFT the lat-
tice model is described by the BFKM involving self-
consistently determined bath.

In the lattice model, we numerically identity a Kondo
destruction QCP, which separates a paramagnetic Kondo
screened phase from an antiferromagnetic Kondo de-
struction phase [37]. We then investigate the charge re-
sponse G′B at the QCP. As shown in Fig. 4, we find G′B

10−3 10−2 10−1 100

πτT/ sin(πτT)

10−1

100

G
′ B
(τ

)

β = 1600

β = 1200

β = 800

β = 600

x0.46

FIG. 4: Singular charge response of the B-field calculated in
the lattice model at the Kondo destruction QCP.

to collapse as a function of πT/ sin(πτT ). The critical
exponent is about 0.5 which corresponds to the s ∼ 0
case in the BFKM. This form of charge response is criti-
cal and satisfies ω/T scaling.

Discussion and conclusion. Importantly, in both the
Bose-Fermi Kondo model and Kondo lattice model, only
spin appears in the (strongly correlated) local degrees of
freedom. At the corresponding Kondo destruction QCP,
we find that the charge response not only is singular but
also satisfies ω/T scaling. The development of a singular
charge response in such a model is surprising, because
the only microscopic charge degrees of freedom in the
Hamiltonian are associated with the non-interacting con-
duction electrons; only spins are involved in any of the
interaction terms. It demonstrates the power of quantum
(Kondo) entanglement in strongly correlated metallic set-
tings. More generally, our results capture the aspects of
quantum criticality that are unique to strongly correlated
metals, namely the quantum entwining of the charge and
spin degrees of freedom.

Our work provides the theoretical basis for the un-
derstanding of the surprising experimental observation
in Ref. [20], where a singular charge response with ω/T
scaling is found at an antiferromagnetic QCP. Finally, be-
cause Kondo destruction represents a partial-Mott tran-
sition, our work suggests that probing the singularities
of both charge and spin responses represents a fruitful
means of elucidating strange metals near an electronic
localization, such as the cuprate high temperature su-
perconductors and organic charge transfer salts.
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