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Exploring the properties and applications of topological quantum states is essential to better
understand topological matter. Here, we theoretically study a quasi-one dimensional topological
atom array. In the low-energy regime, the atom array is equivalent to a topological superatom.
Driving the superatom in a cavity, we study the interaction between light and topological quantum
states. We find that the edge states exhibit topology-protected quantum coherence, which can
be characterized from the photon transmission. This quantum coherence helps us to find a
superradiance-subradiance transition, and we also study its finite-size scaling behavior. The
superradiance-subradiance transition also exists in symmetry-breaking systems. More importantly,
it is shown that the quantum coherence of the subradiant edge state is robust to random noises,
allowing the superatom to work as a topologically protected quantum memory. We suggest a relevant
experiment with 3D circuit QED. Our study may have applications in quantum computation and
quantum optics based on topological edge states.

Introduction.—One of the most striking achievements
in modern physics is the discovery of topological
materials. Also, novel forms of topological quantum
states are pursued in both matter and light [1–4]. These
exotic states are protected by band gaps which can be
closed via topological phase transitions [5–7]. Topological
quantum states have applications in many quantum
technologies, e.g., topological qubits [8–12], topological
quantum channels [13, 14], topological surface waves [15,
16], and topological lasing [17–20]. In topological many-
body systems, owing to the peculiar geometry of edge
states, driving a single atom could excite an edge state
and generate a quantum nonlinearity for photons [21]. In
the emerging field of topological quantum optics [21–25],
the interaction between light and topological quantum
states should be explored to better understand the
properties of topological quantum matter.

Collective behavior in quantum many-body systems
originates from quantum coherence [26]. In cavity-
QED, single-photon absorption is able to build many-
body coherence among atoms, producing superradiance
or subradiance [27–31]. A superatom model is used to
explain such collective phenomena [32] and has been
realized via Rydberg blockade [33, 34]. Recent studies
about topological matter show that single-atom quantum
coherence can be protected by topology [35–38]. Indeed,
topological protection makes nonlocal quasiparticles in
the ground state manifold ideal candidates for realizing
topological quantum computation [39, 40]. In partic-
ular, researchers have analyzed quantum coherence of
Majorana zero modes in decoherence-free subspaces [41]
and quantum manipulation of Majorana bound states via
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electron-photon interactions [42–45].

We consider a quasi-one-dimensional topological array
of two-level atoms. In the low-energy regime, the atom
array has a ground state and a single-excitation subspace
which has many bulk states and two edge states. The
large gaps between edge states and bulk states in the
single-excitation subspace help us to define a topological
superatom, which consists of a ground state and two
edge states. The typical features of edge states make
them experimentally measurable in various topological
systems [46–50]. Here, we study edge states via
light-matter interactions, from which topology-protected
quantum coherence is found. Superconducting quantum
circuits have applications in quantum computation and
microwave photonics [51, 52]. The recent development
of quantum chip technologies makes it possible to
address qubit arrays, e.g., via 3D integration [53–
56]. For concreteness, here we propose an experimental
setup for studying topological mater in an integrated
superconducting quantum chip.

3D circuit QED with a topological atom array.—
Figure 1(a) shows the schematic of a 3D circuit QED with
multilayer fabrication process. The top layer consists of a
transmission line resonator interacting with an artificial
atom array. In the bottom layer, superconducting
coplanar waveguides are fabricated (not shown). The
atom array has a ladder configuration, as shown in
Fig. 1(b). The couplings between neighboring unit cells
are realized by LC resonators. Through 3D wiring, the
ladder structure of the atom array can be reconfigured
as a 1D array, as shown in Fig. 1(c). The crossings
between wires represent airbridges [57–59]. To show how
the atoms are coupled, we first consider the interaction
between atoms A1 and B2 in the first and second
unit cells, respectively. In the rotating frame with
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FIG. 1. (a) Schematic of a 3D circuit QED. The top layer
contains a microwave transmission line resonator, which plays
the role of cavity, couples with an array of superconducting
artificial atoms. On the bottom layer, superconducting
coplanar waveguides are fabricated and coupled to the atoms
on the top panel via interconnects in the middle dielectric
layer (see Ref. [64] for details). (b) The atom array in (a)
has internal interactions between neighboring unit cells. The
atoms are coupled by resonators represented by LC circuits.
Blue and orange dots denote atoms A and B in unit cells.
(c) Wiring of the coupling circuits, so a 1D atom array can
be obtained and coupled to the transmission line resonator,
as shown in (a). (d) Optically addressing edge states of the
topological atom array.

the frequency of the coupler, the system Hamiltonian
becomes (~ = 1)

HAB =
∑

α=1A,2B

∆ασ
+
α σ
−
α − gα(σ+

α â1 + â†1σ
−
α ), (1)

where ∆α and gα are detunings and couplings between
the atoms and the LC resonator, respectively. Hereafter,
we assume ∆1A = ∆2B = ∆. Also, σ+

1A = |A1〉〈α1|
and σ+

2B = |B2〉〈β2| are the atomic operators where |α1〉
(|A1〉) and |β2〉 (|B2〉) denote the ground (excited) states

of atoms A1 and B2, respectively. And â1 (â†1) represents
the annihilation (creation) operator of the resonator.
When g1A, g2B � |∆|, by making a Schrieffer-Wolff
transformation, we can obtain the effective Hamiltonian

H̃AB =
(

∆ +
g2

1A

∆

)
σ+

1Aσ
−
1A +

(
∆ +

g2
2B

∆

)
σ+

2Bσ
−
2B

+
g1Ag2B

∆
(σ+

1Aσ
−
2B + σ+

2Bσ
−
1A). (2)

The first and second terms contain Lamb shifts due to the
virtual photons in the LC resonator. The last term is the
effective coupling between these two atoms, which can
be realized in many quantum systems [60–63]. To couple
two neighboring unit cells, we need four LC resonators;

each one producing a specific interaction. Based on this
coupling scheme, an atom array can be obtained [64].
Topological Superatom.—The atomic interactions pro-

duced by exchanging virtual photons allow the study
of many-body phenomena [65–67]. Using the airbridge
wiring technique [57–59], quantum networks of artificial
atoms can be realized in superconducting quantum
circuits. Considering the lattice in Fig. 1(b), the effective
Hamiltonian of the atom array can be written as

H̃ =

N∑
i=1

δ(σ+
iAσ
−
iA − σ

+
iBσ
−
iB) +

N−1∑
i=1

[
tp(σ

+
iAσ
−
i+1A

− σ+
iBσ
−
i+1B)− tc(σ+

iAσ
−
i+1B − σ

+
iBσ
−
i+1A) + H.c.

]
,(3)

where δ is half of the effective energy splitting between
two excited states |Ai〉 and |Bi〉 of atoms A and B in the
ith unit cell; tp and tc are, respectively, the parallel and
cross couplings [64]. To better see the physical picture of
Eq. (3), we can rewrite it in the single-excitation subspace
{|Ai〉, |Bi〉}, with |Ai〉 = σ+

iA|G〉 and |Bi〉 = σ+
iB |G〉

(here |G〉 = |α1β1α2β2 · · · 〉), which represents a lattice
as shown in Fig. 2(a). After making Fourier transforms
to the vectors |Ai〉 and |Bi〉, Eq. (3) can be written in

crystal momentum space as H̄(k) =
∑
k Ψ†kh(k)Ψk, with

Ψ†k = (|Ak〉, |Bk〉), and

h(k) = dy(k)σy + dz(k)σz. (4)

Here, dy(k) = 2tc sin k and dz(k) = δ + 2tp cos k.
The system is protected by chiral symmetry [68], i.e.,
σxh(k)σx = −h(k), as well as particle-hole and time-
reversal symmetries, and belongs to the BDI class [69].
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FIG. 2. (a) Lattice in the single-excitation subspace. Solid
and dashed lines represent parallel and cross couplings,
respectively. (b) Topology of the lattice in the auxiliary space
[dy(k), dz(k)]. The winding number for the topological phase
is nontrivial. (c) Energy spectrum of the tight-binding lattice
in (a). There are large gaps between edge states and bulk
states. As δ changes across the critical point δc, edge states
undergo a transition to bulk states. (d) Wavefunctions of edge
states at δ = 0.1δc. Here n labels the positions of atoms in
the array, i.e., odd (even) number of n corresponds to |An+1

2
〉

(|Bn
2
〉). The parameters in (c) and (d) are tc = tp and the

number of unit cells N = 20.
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The topological nature can be extracted from the
winding number [70, 71], defined in the auxiliary space
[dy(k), dz(k)], as shown in Fig. 2(b). When −δc <
δ < δc, with δc = 2|tp|, the system is in a topological
insulating phase with nontrivial winding number. As |δ|
increases and becomes larger than δc, a normal insulator
is obtained for zero winding number.

From the edge-bulk correspondence, it is known that
the topological phase supports edge states for open
boundary conditions. The energy spectrum of the
atom array in the single-excitation subspace is shown in
Fig. 2(c). Zero modes for |δ| < δc represent edge states.
The edge states localized at the left and right boundaries
are

ψL(i) = [N−L ]−
1
2 [(λ−,1)i − (λ−,2)i]φ−, (5)

ψR(i) = [N+
R ]−

1
2 [(λ−,1)N+1−i − (λ−,2)N+1−i]φ+, (6)

where N−L and N+
R are the renormalization factors, and

λ−,l =
[
δ+(−1)l−1(δ2−4t2p+4t2c)

1/2
]
/(−2tc−2tp) (with

l = 1, 2) [11, 72]. φ± are eigenstates of σx. From the edge
states, we can find several features. First, the left and
right edge states are polarized with anti-symmetric and
symmetric superpositions of |Ai〉 and |Bi〉, respectively.
Second, the edge states are exponentially localized in the
boundaries, as shown in Fig. 2(d). These properties are
helpful for manipulating edge states. The above edge
states occur when |λ−,l| < 1. The case |λ−,l| > 1 has
oppositely polarized edge states [64]. From the spectrum,
we can find that the edge states have large energy gaps
with bulk states. Therefore, a topological superatom
with a V-shaped three-level structure [73, 74], which
consists of a ground state and two edge states, can be
modeled to characterize the atom array in its low-energy
regime.

Optically Probing Edge States.—Generally speaking, it
is challenging to selectively drive quantum many-body
states in large-scale systems. However, owing to specific
properties of the edge states analyzed above, one can
realize interactions between light and edge states. As
shown in Fig. 1(a), the atom array can be driven by a
single-mode cavity field. The Hamiltonian of the cavity

field with external driving is Hc = ∆cf̂
†f̂ + iη(f̂† − f̂),

where ∆c = ωc − ωl, f̂ (f̂†) is annihilation (creation)
operator of the cavity field, η is the pumping strength,
and ωc and ωl are the frequencies of the cavity and
driving fields, respectively. The Hamiltonian describing
the couplings between the cavity field and the atom

array is HI =
∑
i(ξiAf̂σ

+
iA + ξiB f̂σ

+
iB + H.c.). We

consider the resonant driving of edge states, and the
large gaps between edge states and bulk states prevent
bulk states from being excited. The dynamics of the
many-body system is described by the master equation
ρ̇ = i[ρ,Htot] +Lc[ρ] +La[ρ], with the total Hamiltonian

Htot = H̃ + Hc + HI , and dissipation terms for the

cavity Lc[ρ] = κ(2f̂ρf̂† − f̂†f̂ρ − ρf̂†f̂) and atom array
La[ρ] =

∑
i,µ,ν γµν(2σ−iµρσ

+
iν − σ

+
iµσ
−
iνρ− ρσ

+
iµσ
−
iν). Here,

κ is the decay rate of the cavity, and γµν the decay rates

of the atoms [75]. Specifically, γAA, γBB are the decay
rates of atoms Ai and Bi, respectively. For simplicity, we
write γAA = γBB = γ. The correlated decays γAB and
γBA between atoms Ai and Bi play fundamental roles
in many quantum optical effects [76–81]. The symmetric
correlated decays, i.e., γAB = γBA, can be realized by
coupling two atoms to a waveguide [82–84]. In the 3D
integrated circuits [see Fig. 1(a)], the artificial atoms
are coupled to superconducting coplanar waveguides via
interconnects [64].

In the low-excitation limit, the dynamic equations of
the system are〈 d

dt
f̂
〉

= −(κ+ i∆c)〈f̂〉 − iΞT〈σ〉+ η, (7)〈 d
dt
σ
〉

= −i(∆ +D − iΓ)〈σ〉 − iΞ〈f̂〉, (8)

where Ξ is the coupling vector between cavity field and
atoms. Also, 〈σ〉 = (〈σ−1A〉, 〈σ

−
1B〉, 〈σ

−
2A〉, 〈σ

−
2B〉, · · · )T,

∆ = Diag(δ,−δ, δ,−δ, · · · ); while D and Γ denote the
couplings and dissipations in the atom array [64]. From
Eqs. (7) and (8), the transmission can be formulated as

T =
∣∣∣ κ

κ+ i∆c − iχ

∣∣∣2, (9)

where the susceptibility is χ = Ξᵀ(∆ + D − iΓ)−1Ξ.
When the cavity field is resonant with the superatom
and the coupling parameters are appropriately chosen,
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FIG. 3. (a) Transmission of light through the left (green-
dashed) and right (red-dotted) edge states with γAB = 0.99γ.
The black curve represents the transmission for both left and
right edge states with γAB = 0. Here we consider δ = 0.1δc.
(b) Real (solid) and imaginary (dashed) parts of the rescaled
susceptibility χ by κ for the left (green) and right (red)
edge states with γAB = 0.99γ. Im[χ] shows the edge-bulk
transition in a finite lattice. (c,d) Variations of coherence
when the system is changed from the topological to the non-
topological regime. The effective decays of (c) and (d) in
the unhybridized regime δ < 0.15δc correspond to the left
and right edge states, respectively. The γAB used in (c) is
the same as that in (d). Other parameters for these figures:
tc = tp, γ = 10κ,N = 20.
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only the edge state can be driven. It is known that in
cavity-QED with a single atom, the photon transmission
exhibits radiation properties of the atom [85, 86]. For
the topological superatom here, properties of edge states
can be explored. Figure 3(a) presents the transmission
corresponding to the left and right edge states for
δ = 0.1δc. As the correlated decay γAB increases,
the transmission for the left edge state at resonance
decreases. However, for the right edge state, the
transmission is enhanced accordingly. The cavity decay
κ plays important role in the transmission. Here
we consider the cavity with low decay, i.e., κ =
0.1γ. The large cavity decay is also studied [64].
Light transmission is versatile in detecting topological
states [87–90]. Figure 3(b) shows the rescaled Re[χ] (solid
line) and Im[χ] (dashed line) for both the left (green)
and right (red) edge states. At δ = 0.1δc, as studied
in Fig. 3(a), Re[χ] is zero (see Fig. 3(b)), therefore the
transmission at resonance is Tres = 1/(1+Im[χ]/κ)2. For
the left (right) edge state, Im[χ]/κ is 90 (0.45) and Tres

is about 0 (0.48), for the given parameters. Figure 3(b)
shows two regimes with different values of Im[χ] in the
topological phase, produced by a finite-size topological
phase transition. The detailed physics will be discussed
below.

Quantum Coherence of Topological Superatom.—From
the susceptibility, we can obtain the effective decay,

non-topologicaltopological
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FIG. 4. (a) Superradiance-subradiance transition with
different lattice lengths. The inset shows the finite-size
scaling of SST for γAB = 0.99γ, where δm is defined by
γeff(δm) = γ. (b) Effect of symmetry breaking resulting
from waveguide-induced interactions between atoms, with
γAB = 0.97γ and the interactions between atoms in the same
unit cells gAB = 0.1γ. The inset shows the finite-size scaling
behavior of ln(δ′m − δm), where δ′m indicates the SST in the
symmetry-breaking case. (c) The effect of disorder in atomic
frequencies, with γAB = 0.99γ and N = 50. The arrow
indicates the position δ = δm, where SST takes place. (d) The
difference between averaged γeff with disorder (ε/tp = 0.5)
and γeff without disorder. Other parameters for these figures:
tc = tp, γ = 10κ.

γeff = −Im(ΞᵀΞ/χ) as in Refs. [91–93], of the topological
superatom. Based on the coupling between light and
edge states, we explore the quantum coherence, which
can be inferred from γeff [94], in a topological superatom.
We find that all the eigenmodes have the same coherence
for γAB = 0. However, as shown in Figs. 3(c,d), the
coherence properties of the superatom vary when δ is
changed from the topological (δ < δc) to the non-
topological (δ > δc) regime for nonzero γAB . In the
topological regime, as shown in Fig. 3(d), we find the
superradiance-subradiance transition (SST) by defining
γeff(δm) = γ, where the transition point δm = 0.15δc for
given parameters characterizes the hybridization of the
edge states. In the unhybridized regime δ < δm, the left
edge state is subradiant (γeff,L = γ − γAB < γ), and the
right edge state is superradiant (γeff,R = γ + γAB > γ).
But, the hybridized edge states in the regime δm < δ < δc
are subradiant, as shown in Figs. 3(c,d).

In Fig. 4(a), we further study the SST for different sizes
of atom arrays. The inset presents the finite-size scaling
behavior between the SST and the topological phase
transition. The effective decay starts to increase after the
topological phase transition. The symmetries in the atom
array can be broken when waveguides induce interactions
between atoms. In this scenario, the degeneracy of
edge states is shifted, while the polarizations of edge
states are preserved [64]. The SST is still found, as
shown in Fig. 4(b). The inset shows the finite-size
scaling behavior between SSTs for symmetry-breaking
and symmetry-preserving cases. The shift of the SST
produced by symmetry-breaking interactions depends on
system’s size. In Fig. 4(c), we study the disorder effect
of atomic frequencies ωiα+ εiα (α = A,B), where the εiα
are randomly distributed εiα ∈ [−ε, ε]. Here, ε represents
the strength of the disorder. The quantum coherence
of the subradiant edge state without hybridization (δ <
δm) is robust to random noise. However, the noise
induces decoherence for hybridized edge states (δm <
δ < δc). In Fig. 4(d), we characterize the disorder-
induced decoherence by ∆γeff = γeff − γeff , where γeff

is the averaged effective decay of the disordered systems.
The unhybridized subradiant edge state is indeed robust
to noises, compared with the hybridized edge states and
bulk states. It can be used for quantum memory.

Discussions and Conclusions.—Recently, a ladder
array with 24 superconducting artificial atoms has been
experimentally demonstrated [95]. We find that even in
small-size topological atom arrays realizable in current
experiments, the collective edge states studied here can
be observed. For example, when the number of unit
cells is N = 6, the edge states are localized and allow
for optical measurements [64]. The correlated decay
γAB = 0.99γ we considered in this work means a Purcell
factor ∼ 100, which has been realized in superconducting
quantum circuits [84]. Moreover, by considering the
fluctuations of atomic frequencies and interactions, we
find that the quantum coherence of edge states can be
robust to random noises [64].
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In summary, we propose a quantum optical method
to study topological matter. Owing to the large gaps
between edge states and bulk states, a topological
superatom is able to characterize the atom array in the
low-energy regime. To optically drive the superatom,
the unique properties of edge states (i.e., topology-
protected polarization and boundary localization) are
utilized. From the photon transmission, we find
topology-protected quantum coherence distributed in
the superatom. The topological superradiance and
subradiance found here have important applications.
When the symmetries in the system are preserved, the
SST has a finite-size scaling relation with the topological
critical point. This means that quantum coherence may
provide an alternative way to characterize topological
phases [96, 97]. The SST is still found in symmetry-
breaking systems, and the symmetry-breaking-induced
shift of the SST depends on the system size. We study the
effect of disorder on the system parameters and find that
the quantum coherence of the unhybridized subradiant
edge state is robust to random noises. Therefore
the superatom can be used as a topology-protected
quantum memory. We hope that this proposal can be
experimentally realized by a circuit-QED system.
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