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Quantum error correction is expected to be essential in large-scale quantum technologies. How-
ever, the substantial overhead of qubits it requires is thought to greatly limit its utility in smaller,
near-term devices. Here we introduce a new family of special-purpose quantum error-correcting
codes that offer an exponential reduction in overhead compared to the usual repetition code. They
are tailored for a common and important source of decoherence in current experiments, whereby
a register of qubits is subject to phase noise through coupling to a common fluctuator, such as a
resonator or a spin defect. The smallest instance encodes one logical qubit into two physical qubits,
and corrects decoherence to leading-order using a constant number of one- and two-qubit opera-
tions. More generally, while the repetition code on n qubits corrects errors to order t©", with ¢
the time between recoveries, our codes correct to order o™, Moreover, they are robust to model
imperfections in small- and intermediate-scale devices, where they already provide substantial gains
in error suppression. As a result, these hardware-efficient codes open a potential avenue for useful

quantum error correction in near-term, pre-fault tolerant devices.

Decoherence, the uncontrolled decay of coherence in
open quantum systems, is a central obstacle to devel-
oping coherent quantum technologies such as quantum
sensors, networks, and computers. This obstacle is com-
pounded by the destructive nature of quantum measure-
ment: straightforward attempts to identify—and ulti-
mately reverse—decoherence destroy the quantum co-
herence they seek to protect. Quantum error correc-
tion (QEC) is a technique for taming decoherence which
sidesteps this issue. It encodes lower-dimensional quan-
tum states into a higher-dimensional quantum system
such that decoherence can be detected and approximately
reversed without collapsing the encoded state. Specifi-
cally, the most common approach encodes k logical qubits
into an n-qubit register (k < n) whose Hilbert space H
is decomposed into orthogonal subspaces Cy,C1,Ca, ... of
dimension 2¥ [1]. These subspaces are chosen by speci-
fying operators E1, Fo, ... and demanding that the log-
ical states, which reside in Cy, be mapped to C; by FE;
without distortion [2]. By performing a partial mea-
surement that reveals only which subspace contains the
state, and feeding back appropriately, one can reverse the
occurrence of any E;—and more generally, any error in
& =span{l, E1, Es,...}. The conventional strategy is to
pick E;’s so that £ encompasses a broad family of oper-
ators on H. Using Pauli operators of weight up to w, for
instance, produces a QEC code that corrects arbitrary er-
rors on w qubits. This is a powerful approach, especially
in large devices (n > 1), since it can reverse decoher-
ence with little regard to its physical origins [3, 4]. For
smaller devices, however, casting such a wide net requires
an overhead of qubits (n — k) that is often prohibitive for
near-term applications. A more economical strategy for
small- and intermediate-scale devices is instead to use a
QEC code with & tailored to include only the dominant,

well-characterized decoherence modes. However, while
this strategy is well-known (see [3] §10.6.4), few explicit
such codes have been discovered; see, e.g., Refs. [5-7].

In order to systematically find noise-tailored QEC
codes, here we focus on dephasing, since it is the dom-
inant type of decoherence in various experiments. In
particular, we consider the common scenario where de-
phasing in a register of qubits arises primarily due to
eigenstate-preserving coupling of each qubit to a com-
mon fluctuator, which in turn exchanges energy with an
external environment. That is, we consider a Hamilto-
nian

1 n . n
H:H?+§ZWij+H}nt®Zngj (1)
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where [H?, H ifnt] = 0, and a fluctuator that jumps inco-
herently between energy eigenstates {|() ;} (reflected by a
dissipative term in the overall master equation). Moving
to the interaction picture, the Hamiltonian (1) becomes

H=> Nlt)t|; ® Hg, (2)
0

where H = 37, M|€)(¢]; and Hp := Y7, g;Z;. When
the fluctuator is in state |[(),, qubit j has an effective
Hamiltonian A¢g;Z; in the rotating frame. Jumps of
the fluctuator therefore induce spatially-correlated ran-
dom telegraph noise in the register, which causes de-
phasing [8, 9]. This model, which we call common-
fluctuator dephasing (CFD), often describes the main de-
coherence mechanism in nuclear spins near spin defects
(e.g., Nitrogen-Vacancy centers in diamond [10]) or quan-
tum dots, and can also be significant in superconducting
qubits dispersively coupled to a common resonator with
non-zero effective temperature [10-24]. Often the register



is read out and/or initialized via the fluctuator, impos-
ing a lower limit on the desirable coupling strengths g;,
and making CFD a significant decoherence mode. Note
that CFD does not generally produce a decoherence-free
subspace (DFS).

The standard QEC approach to correct dephasing uses
E;’s comprising Pauli Z operators on at most w qubits
(and I on the rest). There are Y .. (") such matri-
ces; a simple counting argument (the quantum Ham-
ming bound applied to phase noise) therefore suggests
that n > 2w + 1 physical qubits are required to protect
k =1 logical qubit from arbitrary phase errors of weight
< w [3]. Indeed, the repetition code saturates this bound:
the smallest instance uses n = 3 for w = 1, has logical
states |0,) = |+++) and |1,) = |—-——) where |£) :=
%(|O> + 1)), and corrects for & = span{l, Z;, Zs, Z3}.
It can correct CFD as follows: In any run of the experi-
ment, the register evolves over time t as U(f) = e~ 91z
for some random variable 6 € [tAmin, tAmax] that depends
on the fluctuator’s trajectory. For short ¢ (understood
in units of 1/ max;e|g; |, and often reducible through
dynamical decoupling [10, 25-27]), U(6) can be approx-
imated as U(0) = I —i0Hg + O(t?). Since Hg € &
regardless of 6, this 3-qubit code corrects dephasing at
order O(t). More generally, Hf, contains Paulis of weight
< g, so correcting to order O(t?) with the repetition code
requires n = 2q + 1 qubits (for k = 1).

While the value of 6 is unknown and varies from
one run to the next, the coupling strengths g; are
often fixed and well characterized. This suggests
designing a code that corrects expressly for & =
span{l, Hg, H%,,...,H%}, and depends on the {g;} in a
particular device. A similar counting argument as above
suggests that such a code would require g + 1 subspaces
to protect a logical qubit to order O(t?), and therefore
require

n = 1+ logy(q + 1] (3)

qubits—an exponentially smaller overhead. We give a
family of such codes here for general ¢ and arbitrary cou-
pling strengths {g;}. We focus in particular on the ¢ = 1
case, where one logical qubit is encoded in two physical
qubits rather than three. We construct recovery and log-
ical operations for this code, which can be implemented
using a constant number of one- and two-qubit opera-
tions.

The decomposition H into subspaces C; for QEC is
equivalent to the Knill-Laflamme conditions [28, 29]. For
k=1 and € = span{Hy}]_, these take the form

<OL|Hg|OL> = <1L|HJTEn|1L> (4)
(O|HE 1) =0 (5)

for 0 < m < 2q, where we consider values of ¢ that satu-
rate the ceiling in Eq. (3) (that is, ¢ = 2"~ —1). Finding

a QEC code that corrects this £ therefore requires find-
ing logical states |0,) and |1,) that satisfy Eqgs. (4) and
(5). We begin with the ansatz

2'”/_1 271_1
0.) = Z rje’%|j) 1) = Z ran—1-5€"% 1),
j=0 7=0

(6)
for 7;,6;,¢; € R, where we use |j) to denote the n-bit
binary representation of the integer j. That is, we fix
the amplitudes of |1,,) to be those of |0,,) in reverse order.
Notice that Eq. (6) always satisfies (4) for even m > 0,
since X®"HP X®" = (—=1)™Hp. For odd m:

(O] HE|0y) = —(Lo|HE [11) = Z+ U, (7)

where Z, T, € RI*! are defined as z; = (i|Z.]i), with
Zy 1= 0,)(0u] — [L )L, and (i,); = (il HE i) for i € [0,q]
and odd m € [0,2¢g]. Therefore, Eq. (4) is satisfied for
all relevant m if 2 L span{¥,,}. We can always find
such a 7 (# 0) since the @,’s have dimension ¢ + 1 but
there are only ¢ of them, so they cannot form a complete
basis. One approach is to construct a matrix V with
Tm’s as columns; then, I—VV* projects onto span{#,, } -
(where + and L denote the pseudoinverse and orthogonal
complement, respectively) and therefore has at least one
real eigenvector @ with unit eigenvalue [30]. Taking z' =
w/||u]|1 satisfies Eq. (4) since 4 - ¥, = 0 automatically.
Finally, building upon a technique developed in Ref. [7]
for optimization, we pick r;’s as

0,./z;), if z; >0
(1.7 1g) = 4 Yk 12 ®)
(\/—Zj,O), if z5 < 0.

This choice ensures that (j|0,) or (j|1,) vanishes for ev-
ery j, thus satisfying Eq. (5). We now have normal-
ized logical states that form a valid QEC code for all
q > 1. Notice that the components of |0.) and |1.)
generically have unequal amplitudes r; by necessity, in
marked contrast with classical error-correcting codes and
most known QEC codes. The phases 6; and ¢; can be
chosen arbitrarily—we demonstrate a convenient choice
below. The performance of these codes on n < 5 qubits is
shown in Fig. 1 using an illustrative model of a normally-
distributed 6. In addition, we give the pseudothresholds
for n = 2 and 3 under the same model in the Supplemen-
tal Material [31].

To illustrate this QEC code, we consider explicitly
the smallest case of n = 2 qubits coupled to a two-
level fluctuator with Ayq; = %1 [cf. Eq. (2)], at high
temperature. We will label the register qubits 1 and 2
such that |g1| > |g2|. Note that here—and in general—
Hg = g171 + g2Z5 is a combination of weight-1 Pauli
operators, not a weight-2 Pauli. This Hg gives ¥} =
(91 + 92,91 — g2)". The matrix I — VV* has only a 1-
dimensional eigenspace with unit eigenvalue, spanned by
@ = (—g1+ 92,91 +92)7, where @ - = 0. If g; >0 we
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FIG. 1. Comparison of QEC codes performance. We
assume that the effect of the quantum fluctuator is to im-
part a random phase, 0, which follows a Gaussian distribu-
tion 8 ~ N(0,0) with standard deviation o. By normalizing
the g;’s to lie in [0, 1]", o describes the noise strength. CFD
followed by a QEC recovery (if applicable) results in an effec-
tive phase- or bit-flip channel p — (1 — p)p + p ApA, where
A = Z for the physical qubits, X, for the repetition codes,
and Z, for hardware-efficient codes. The average infidelity,
average trace distance and diamond distance to I are all « p.
As the performance of all strategies shown depends on {g;},
we plot the average of p over {g;} € [0,1]". The error bands
for the hardware-efficient codes denote the standard error of
the mean from Monte Carlo integration. More details on the
numerical implementation are given in [31].

find ry =r3 =0 and

To=CVg1—g2 T2 =g+ g2, (9)
where ¢ = 1/4/]|@||1. This gives logical states

00) = Ix0)[0) 1) = |x1)[1) (10)
with

xo) = e(Vlgn — 921 10) + Vlgr + gal €% 1))
i) = e(VIgr + gl €1 0) + VV]gr — gal e 1)),

where |0) and |1) refer to the states of a qubit. The
g1 < 0 case gives the same result up to a relabelling of
[0.) <> |1.). This code corrects for £ = span{Il, Hg}; by
design, however, it does not correct for Z;Zs, nor Z; or
Z individually, none of which belong to £. Rather, it
corrects CFD with fewer qubits than the smallest repeti-
tion code precisely because we have chosen not to correct
individual Pauli operators.

Observe that Egs. (10) and (11) reduce to a DFS in the
limit where one exists (|g1| = |g2|), but this is in practice
rare. More generally, notice that the choice 6y = ¢y +7 =
—0y = —¢3 = ¥ for arbitrary 9 proves convenient: First,
it gives (xo|x1) = 0, and a simple action of Hg on logical
states:

(11)

Hp |0) o< |[x1)|0) =: |0g)
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FIG. 2. A recovery procedure for n = 2 qubits where [1).) =
«|0,) + B|1.) for arbitrary « and 3, H denotes a Hadamard
gate, and 6 is a random variable. The unitaries U, and U, are
both 7 rotations about orthogonal axes on the Bloch sphere
which are determined by g1, g2 and 9.

Both lines have the same proportionality constant, and
we have defined the error states |0g) and |15). We empha-
size that since Hg cannot generically be decomposed as
a tensor product, it maps most separable states to entan-
gled states; Eq. (12)—wherein the first qubit is “fipped”
by Hg—is due to our choice of |0,) and |1.). Second,
consider the orthogonal projectors P, = [0, )0y + |11, X1,
and Py = |05)0g| +|1e) 1| onto Cy = span{|0.), |1.)} and
C1 = span{|0g), |15) } respectively (H = Co®C;). One can
detect an error non-destructively by measuring parity in
the |x;)|j) basis, which can be done by performing phase
estimation (i.e., “phase kickback”) on

S=P —-P,=U.® % (13)

with an ancilla [32]. Crucially, the choice of phases
in |0,) and |1.) makes S separable here, where U, :=
IxoXxol — |x1){x1| is a m rotation about some axis deter-
mined by g1, g2 and 9. This means that the controlled-S
(cS) operation used to measure the error syndrome can
be implemented through a pair of two-qubit operations
(cU, and cZ), rather than a more challenging 3-qubit
operation. If an error is detected, it can be corrected by
applying U, = |xoXx1| + |x1)Xxo0| to qubit 1—a 7 rota-
tion about a different axis. (Both U, and U, could be
synthesized out of a constant number of Pauli rotations,
or implemented directly, e.g., by driving qubit 1 off reso-
nance [33].) The full recovery procedure, which corrects
CFED to leading order, is shown in Fig. 2. Note that S
behaves like a stabilizer, in the sense of its action on Cy
and C;. It does not, however, fit in the usual QEC sta-
bilizer formalism since {Hpg, S} # 0 generically, because
{Hg,S}¢) = 0 for |¢p) € Cy but not for |¢) € C; [34].
This is because Hg maps Cy to C; without distortion,
but not vice-versa, as Hg is not generically in the Pauli
group. (Neither is S.) In spite of these unusual features,
the procedure for feeding back on S in Fig. 2 is largely the
same as that of the usual stabilizer formalism. Finally,
(i) the encoding can be realized by applying a c2(Uy);
gate to an initial state |xo)|¢)), and (ii) there is a simple
way to implement any logical unitary U, in this code:
apply the corresponding physical U to qubit 2 followed
by a recovery.

The logical states derived above are also valid for all



g > 1 (i.e.,, n > 2 qubits), but the corresponding recov-
ery and logical operations are generally more involved.
Generically, the analogues of S in (13) are not separable
for any choice of 6; and ¢; [35]. One might still synthe-
size them with one- and two-qubit operations, perform
phase kickback through optimal control, or implement a
QEC recovery via more general channel-engineering tech-
niques [36-39]. More efficient solutions could even be
found by analyzing specific experimental scenarios. One
approach could be for example to use devices with {g;}
chosen so that the recovery and logical operations can be
conveniently implemented. One could also correct to a
slightly lower order q [i.e., maintaining n = O(log¢q) but
not saturating the ceiling in Eq. (3)]; this would yield
a continuous family of possible Z’s [cf. Eq. (8)], among
which one might find codes with convenient QEC oper-
ations. Note finally that for n > 2 it is not the bare
Hp’s that map the codespace to the orthogonal sub-
spaces {C;}i>1, but rather linear combinations of them.

These noise-adapted QEC codes involve a trade-off:
they correct CFD very efficiently at the cost of leav-
ing most other errors uncorrected. For instance, er-
rors during gates, due to miscalibration of g;’s, or from
decoherence beyond CFD will generally affect the logi-
cal state [31]. Accordingly, these codes are manifestly
not fault-tolerant in their current form [40]. Crucially
though, they offer such a large error budget under strong
CFD—as evidenced by the gaps between QEC codes and
physical qubits in Fig. 1—that this trade-off can easily
be worthwhile, much like the targeted correction of pho-
ton loss in [42]. Indeed, as we show in [31], the gap
survives even in the presence of large miscalibration of
the g;’s. Fault-tolerance could still be achieved using
implementation-specific methods as in Ref. [41]. In the
long-term, concatenation could potentially reach fault-
tolerance, using our noise-adapted codes at the lowest
level of encoding to protect against the dominant er-
ror source, and more conventional codes at higher levels.
Even more importantly, our codes could have a near-
term impact in applications such as quantum sensing and
communication, where long-lived quantum memories are
useful even when they are not fault-tolerant. We empha-
size, however, that these codes are designed expressly for
small- and medium-scale qubit registers, and that the ex-
ponential reduction in overhead should be understood to
apply only in such devices. For one, there is typically
a maximum n above which CFD no longer dominates.
Also, while the error budget always increases with n in
principle, so too do the effects of gate errors, miscalibra-
tion of g;’s and decoherence beyond CFD, as more qubits
introduce more error channels. Conversely, this growing
sensitivity suggests an unconventional quantum sensing
scheme to measure {g,} for large n, by variationally ad-
justing one’s estimates to maximize code performance. In
the nearer term, however, these imperfections will likely
set a maximum n in any particular device beyond which

one achieves no further gains, depending on their relative
importance compared to CFD [31].

The QEC codes presented could be generalized in sev-
eral ways. First, they can readily be made to cor-
rect dephasing due to multiple common fluctuators given
enough qubits, at the cost of correcting to lower or-
der in t. Similarly, they can correct spatially-correlated
phase noise beyond that arising from common fluctua-
tors. For instance, classical white noise in the energy
gaps of register qubits leads to Lindblad error operators
Lj=\/\;j¢(Z1,...,Zy,), where {,/A; &} describes the
noise’s normal modes [43]. In the limit of spatially uncor-
related noise the L;’s become Pauli Z operators; however,
correlated noise produces L;’s with unequal amplitudes
V/Aj- When the noise correlations are appreciable, it
could be advantageous to use a QEC code that corrects
the stronger noise modes (those with large A;’s) to higher
order in ¢ than the weaker ones (smaller \;’s) through an
appropriate choice of V. It may also be possible to ex-
tend the codes presented here for the setting where a
fluctuator’s state affects not only the energy gap of each
qubit, but also the direction of its Hamiltonian (i.e., its
quantization axis) [44]. Eigenstate-preserving coupling
arises frequently in practice because a large detuning be-
tween a weakly-coupled qubit and fluctuator suppresses
non-commuting parts of their interaction Hamiltonian.
However, when the coupling to the fluctuator is compa-
rable to the internal Hamiltonian, such as for nuclear
spins near defects in diamond, there can remain signifi-
cant non-commuting terms leading to Hg ~ Zj g; - 0
in Eq. (2). We analyze this effect’s impact on code per-
formance in [31]. Extending the codes introduced here
to this more general setting would make them even more
widely applicable to near-term experiments, but at the
cost of larger overheads, since they would need to con-
tend with a substantially larger space of possible er-
rors. It may be more practical instead to suppress non-
commuting interaction terms at the hardware level by
increasing the energy gaps w; of the register qubits, or at
the “software” level through concatenation [31]. Another
interesting generalization would be to efficiently encode
k > 1 logical qubits, which seems plausible based on the
counting argument used throughout involving the dimen-
sion of H versus €. Finally, it would be interesting to use
the tools presented here to design codes for other com-
mon error sources, such as other types of decoherence or
control/measurement errors.

Our results demonstrate that it is possible to find
noise-adapted QEC codes with a well-defined advan-
tage (here exponential) over known, general codes. It
is commonly argued that QEC will be of little use in
Noisy Intermediate-Scale Quantum (NISQ) devices due
to its prohibitive overhead [45]. Noise-adapted QEC
codes are a promising way to reduce this overhead, al-
though to date they have mostly relied on numerical and
variational techniques that lack transparency in terms



of what advantage the codes can offer, and when [46-
50] (see also [4] Ch. 13 and [51]). In contrast, the
codes introduced here exhibit a clear reduction in over-
head under a well-characterized and common type of
noise. New QEC codes of this type could provide a mid-
dle ground between small-scale uncorrected devices and
large-scale fault-tolerant ones, where the dominant deco-
herence mechanisms are tamed through specialized codes
with only modest overheads. This view of near-term
QEC as quantum “firmware” rather than “software” sug-
gests a possible interplay between theory and experiment,
whereby NISQ hardware and efficient QEC codes both
guide each other’s development.
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