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Device-independent quantum key distribution (DIQKD) offers the prospect of distributing secret
keys with only minimal security assumptions, by making use of a Bell violation. However, existing
DIQKD security proofs have low noise tolerances, making a proof-of-principle demonstration cur-
rently infeasible. We investigate whether the noise tolerance can be improved by using advantage
distillation, which refers to using two-way communication instead of the one-way error-correction
currently used in DIQKD security proofs. We derive an efficiently verifiable condition to certify
that advantage distillation is secure against collective attacks in a variety of DIQKD scenarios, and
use this to show that it can indeed allow higher noise tolerances, which could help to pave the way
towards an experimental implementation of DIQKD.

Introduction — In quantum key distribution, the goal
is to extract a key from correlations obtained by measur-
ing quantum systems. Device-independent quantum key
distribution (DIQKD) is based on the observation that
when these correlations violate a Bell inequality, a secure
key can be extracted even if the users’ devices are not
fully characterised [1–4]. In a DIQKD security proof, it is
merely assumed that the devices do not signal to the ad-
versary or other components except when foreseen by the
protocol [1–3]. This differs from traditional QKD proto-
cols [5], which are device-dependent in that they assume
the devices are implementing operations within specified
tolerances [6]. Implementations of such protocols have
been attacked by various methods [7–9], which exploit
imperfections that cause the devices to operate outside
the prescribed models. By working with fewer assump-
tions, DIQKD can achieve secure key distribution with-
out detailed device characterisation, which would make
the systems more reliable against such attacks.

Unfortunately, there has been substantial difficulty in
finding security proofs for DIQKD protocols with suffi-
cient noise tolerance for physical implementation. One
approach towards improving the tolerance is to inves-
tigate the information-reconciliation step. In QKD, the
raw data of the users is not perfectly correlated, and they
need to agree on a shared key using public communica-
tion. Existing DIQKD security proofs [1, 3] have used
one-way error-correction protocols in this step. How-
ever, for classical key reconciliation [10, 11] and device-
dependent QKD [12–17], the noise tolerance can be im-
proved by using two-way communication, a concept that
has been referred to as advantage distillation.

It is natural to ask whether this concept could be
extended to DIQKD. However, device-dependent secu-
rity proofs for advantage distillation are often based on
detailed state characterisations, given by measurements
that are tomographically complete or nearly so [12–17].
This is generally not available in noisy DIQKD scenar-
ios, where there can be many states and measurements
compatible with the observed statistics. While recent

works [18, 19] have found upper bounds on DIQKD key
rates even with two-way communication, there do not ap-
pear to be any achievability results resolving the question
of whether two-way communication provides an advan-
tage in DIQKD.

In this work, we answer this question in the affirma-
tive, by showing that advantage distillation yields better
noise tolerances than one-way error correction in several
scenarios. Our key observation is that even with the lim-
ited state characterisation available in DIQKD, it is still
possible to identify and bound some important param-
eters that can be used in a security proof. We present
our results in the form of several sufficient conditions
for advantage distillation to be secure, together with a
semidefinite programming (SDP) method to verify when
these conditions hold.

Our security proof is valid in the collective-attacks
regime, where one assumes all states and measurements
are independent and identically distributed (IID) across
the protocol rounds, but the adversary Eve can store
quantum side-information and perform joint measure-
ments on her collected states [6]. Other attack models
include individual attacks, where Eve has no quantum
memory, or the most general coherent attacks, where the
IID assumption is removed. Collective attacks can be
stronger than individual attacks [15, 20], but are often
no weaker than coherent attacks [3, 6]; we focus on col-
lective attacks here.

We focus on improving the asymptotic noise-tolerance
thresholds, i.e. the maximum noise at which key gener-
ation is still possible in the limit of many rounds. This
is an important parameter when considering a proof-of-
principle realisation of DIQKD. Our approach also yields
lower bounds on the asymptotic key rate [21].
Conditions for security — Consider a DIQKD proto-

col between two parties Alice and Bob, where Alice has
X possible measurements A0, A1, ..., AX−1, and similarly
Bob has Y possible measurements B0, B1, ..., BY−1, with
A0, B0 taken to be binary-outcome measurements that
generate a raw key. Eve holds a purification E of Al-
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ice and Bob’s states, and under the collective-attack as-
sumption the states and measurements are IID, so we
can focus on the single-round Alice-Bob-Eve state ρABE .
We assume that the devices do not eventually broadcast
the final key through methods such as device-reuse at-
tacks [22] or covert channels [23]. This assumption could
be supported by implementing measures such as those
proposed in [22–25].

Given the IID structure, parameter estimation can be
performed to arbitrary accuracy, so we shall assume the
outcome probabilities PrAB|XY (ab|xy) for all measure-
ment pairs (Ax, By) are fully characterised in the proto-
col. (We will suppress subscripts for probability distri-
butions when they are clear from context.) For conve-
nience in the proofs, we assume a symmetrisation step
is implemented, in which Alice generates a uniform ran-
dom bit T in each round and sends it to Bob, with both
parties flipping their measurement outcome if and only
if T = 1 [26]. The bit T can be absorbed into Eve’s
side-information E. (This symmetrisation step can be
omitted in practice; see [21] Sec. C.) After this process,
the measurements A0 and B0 have symmetrised out-
comes, in the sense Pr(01|00) = Pr(10|00) = ε/2 and
Pr(00|00) = Pr(11|00) = (1− ε)/2 for some ε < 1/2 [27].
Henceforth, PrAB|XY refers to the distribution after sym-
metrisation.

We focus on the repetition-code protocol [10, 11, 14, 15]
for advantage distillation, which is based on a block of
n rounds in which A0 and B0 were measured (we shall
denote the output bitstrings as A0 and B0, and Eve’s
side-information across all the rounds as E). Alice pri-
vately generates a uniformly random bit C, and sends
the message M = A0 ⊕ (C,C, ..., C) to Bob via a public
authenticated channel. Bob replies with a bit D that ex-
presses whether to accept the block, with D = 1 (accept)
if and only if B0⊕M = (C ′, C ′, ..., C ′) for some C ′ ∈ Z2.
If the resulting systems satisfy

r := H(C|EM ;D = 1)−H(C|C ′;D = 1) > 0, (1)

where H is the von Neumann entropy, then repeat-
ing this procedure over many n-round blocks would al-
low a secret key to be distilled asymptotically from the
bits (C,C ′) in the accepted blocks [3, 28]. Exclud-
ing parameter-estimation rounds, the key rate will be
r(εn + (1− ε)n)/n [14].

We derive [21] the following theorem (where F (ρ, σ) =∥∥√ρ√σ∥∥
1
is the root-fidelity):

Theorem 1. For a DIQKD protocol as described above,
a sufficient condition for Eq. (1) to hold for large n is

F (ρE|00, ρE|11)
2 >

ε

1− ε
, (2)

where ρE|a0b0 is Eve’s single-round state conditioned on
(A0, B0) being measured with outcome (a0, b0).

The intuition behind the proof is that if Eve sees the
message value M = m, then with high probability Alice
and Bob’s strings have the value A0B0 = mm or mm
(where m := m⊕1). Hence Eve essentially has to distin-
guish between these two cases, which can be quantified
via the fidelity F (ρE|mm, ρE|mm) = F (ρE|00, ρE|11)

n.
Eq. (2) is similar to the condition obtained in [15] for

device-dependent QKD, but it is derived here without de-
tailed state characterisation. However, it still remains to
find bounds on F (ρE|00, ρE|11) without device-dependent
assumptions. We approach this task by combining the
Fuchs-van de Graaf inequality [29] with the operational
interpretation of trace distance:

F (ρE|00, ρE|11) ≥ 1− d(ρE|00, ρE|11)
= 2(1− Pg(ρE|00, ρE|11)),

(3)

where Pg(ρE|00, ρE|11) is Eve’s maximum probability of
guessing C given the E part of a c-q state σCE =∑

c(1/2) |c〉〈c|⊗ρE|cc. In a DIQKD protocol as described
above, Pg(ρE|00, ρE|11) can be viewed as Eve’s guessing
probability for the outcome of A0B0, conditioned on the
outcome being 00 or 11. A DI method to bound such
guessing probabilities based on the distribution PrAB|XY

was described in [30], using the family of SDPs known as
the NPA hierarchy [31]. We can hence apply this method
to find whether Eq. (2) holds for various distributions.

However, Eq. (3) is generally not an optimal bound.
We observe that if ρE|00 and ρE|11 were both assumed to
be pure, then it could be replaced by a better relation,

F (ρE|00, ρE|11)
2 = 1− d(ρE|00, ρE|11)2. (4)

While it seems difficult to justify such an assumption
in general, we show that for 2-input 2-output protocols,
one can almost replace Eq. (3) with Eq. (4) after taking
a particular concave envelope [21]:

Theorem 2. Consider a DIQKD protocol as described
above, with X = Y = 2 and all measurements hav-
ing binary outcomes. Denoting the set of quantum dis-
tributions with Pr(00|00) = Pr(11|00) as S, let f be
a concave function on S such that for any γ ∈ S,
all states and measurements compatible with γ satisfy
f(γ) ≥ (1 − ε)d(ρE|00, ρE|11)

2. Then a sufficient con-
dition for Eq. (1) to hold for large n is

1−
f(PrAB|XY )

1− ε
>

ε

1− ε
. (5)

Currently, we do not have a method for finding an op-
timal concave bound on (1−ε)d(ρE|00, ρE|11)2. However,
we find a condition that is more restrictive than Eq. (5)
but more tractable to verify:

Corollary 1. Consider a DIQKD protocol as described
above, with X = Y = 2 and all measurements having
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TABLE I. Noise thresholds for advantage distillation in various DIQKD scenarios. Prtarget is the ideal probability distribution
that the devices should implement in the absence of noise, and qt is the maximum depolarising noise such that we can show
positive key rate is achievable using Theorem 1 (for rows (i)–(iii)) or Corollary 1 (for rows (iv)–(vi)). Analogously, ηt is the
minimum efficiency which can be tolerated when we instead consider a limited-detection-efficiency model. Unless otherwise
specified, the state used for Prtarget is

∣∣Φ+
〉

= (|00〉+ |11〉)/
√

2.

Description of Prtarget State and measurements for Prtarget qt ηt

(i) Achieves maximal CHSH value
with the measurements

A0, A1, B1, B2.

A0 = B0 = Z, A1 = X,

B1 = (X + Z)/
√

2, B2 = (X − Z)/
√

2. 6.0% 93.7%

(i) Modification of a distribution
exhibiting the Hardy paradox [32, 33]

for improved robustness against
limited detection efficiency.

|ψ〉 =
√
κ(|01〉+ |10〉) +

√
1− 2κ |11〉 with κ = (3−

√
5)/2;

the 0 outcomes correspond to projectors onto
|a0〉 = |b0〉 ∝

(√
1 + 2κ−

√
1− 2κ

)
|0〉+ 2

√
κ |1〉,

|a1〉 = |b1〉 ≈ 0.37972 |0〉+ 0.92510 |1〉,
|a2〉 = |b2〉 ≈ 0.90821 |0〉+ 0.41851 |1〉.

3.2% 92.0%

(ii) Includes the Mayers-Yao
self-test [34] and the CHSH

measurements.

A0 = B0 = Z, A1 = B1 = (X + Z)/
√

2,

A2 = B2 = X, A3 = B3 = (X − Z)/
√

2. 6.8% 92.7%

(i) Achieves maximal CHSH value
with the measurements

A0, A1, B0, B1.

A0 = Z, A1 = X,

B0 = (X + Z)/
√

2, B1 = (X − Z)/
√

2. 7.7% 91.7%

(i) Similar to (iv), but with
measurements optimised for

robustness against depolarising noise.

Measurements are in the x-z plane at angles
θA0 = 0.4187, θA1 = 1.7900, θB0 = 0.8636, θB1 = 2.6340. 9.1% 90.0%

(ii) Similar to (iv), but with states
and measurements maximising

CHSH violation for each value of
detection efficiency η [35].

|ψ〉 = cos Ω |00〉+ sin Ω |11〉 with Ω = 0.6224; the 0
outcomes correspond to projectors onto states of the form

cos(θ/2) |0〉+ sin(θ/2) |1〉 with
θA0 = −θB0 = −0.35923, θA1 = −θB1 = 1.1538.

7.3% 89.1%

binary outcomes. Then a sufficient condition for Eq. (1)
to hold for large n is

1− d(ρE|00, ρE|11) >
ε

1− ε
. (6)

As before, we can bound d(ρE|00, ρE|11) by using the
NPA hierarchy. Effectively, Corollary 1 improves over
the combination of Theorem 1 and Eq. (3) by replacing(
1− d(ρE|00, ρE|11)

)2 with 1− d(ρE|00, ρE|11).
Noise thresholds — Using this method, we study the

effects of two possible noise models for binary-outcome
distributions. The first is depolarising noise parametrised
by q ∈ [0, 1/2]:

Pr(ab|xy) = (1− 2q)Prtarget(ab|xy) + q/2, (7)

where Prtarget is some ideal target distribution [36].
The second noise model is limited detection efficiency
parametrised by η ∈ [0, 1], where all outcomes are sub-
jected to independent Z-channels that flip 1 to 0 with
probability 1 − η. This is a standard model for pho-
tonic setups where photon loss or non-detection occurs
with probability 1− η, with such events assigned to out-
come 0 [1]. (η is an effective parameter describing all
such losses. Given more detailed noise models [37], our

method can be applied to the resulting distributions for
more precise results.)

In Table I, we present a selection of our results (see [21]
for the full list). Additionally, in Fig. 1 we plot both
sides of Eq. (6) for row (iv) of the table. From the ta-
ble, we see that appropriate choices of Prtarget can tol-
erate depolarising noise of qt ≈ 9.1% or detection ef-
ficiencies of ηt ≈ 89.1%. This indeed outperforms the
DIQKD protocol in [1] based on one-way error correc-
tion, which can tolerate qt ≈ 7.1% or ηt ≈ 92.4% (or
ηt ≈ 90.7% for a modified version where the state and
measurements A0, A1, B1, B2 are optimised to maximise
the CHSH value for each value of η [35], and B0 is then
separately optimised to be maximally correlated to A0).

We observe that the DIQKD protocol in [1] uses essen-
tially the same Prtarget as row (i) in Table I. This is not
a 2-input 2-output scenario, and so the noise thresholds
we can prove for that specific setup are somewhat worse.
However, row (iv) is in fact the same scenario with one
measurement omitted, making it a 2-input 2-output sce-
nario, thus we could use Corollary 1 to show that advan-
tage distillation in this scenario can surpass the thresh-
olds in [1]. Hence we have shown that for the scenario
in [1], advantage distillation achieves a higher noise tol-
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FIG. 1. (Colour online) Left- and right-hand sides of Eq. (6), shown as solid and dashed curves respectively, for a DIQKD
scenario where the target distribution attains maximum CHSH violation in the absence of noise. Plot (a) shows the effect of
depolarising noise q, while in plot (b) a small amount of depolarising noise is applied (q = 0.1% for the black curve, q = 1%
for the blue curve) followed by a limited-detection-efficiency noise model with efficiency η. In plots (a) and (b), the solid and
dashed curves intersect at qt ≈ 7.7% and ηt ≈ 91.7% (black), 92.6% (blue) respectively, which yield the threshold values such
that we can show positive key rate is achievable via Corollary 1. The solid curves reach zero at the same noise values as where
the CHSH violation becomes zero.

erance even while ignoring one measurement. This is
particularly surprising since the key-generating measure-
ments in row (iv) are not perfectly correlated. In fact,
if the proof in [1] were applied to this scenario [38], it
would only tolerate noise up to qt ≈ 3.1%.

In Table I, the noise thresholds for scenarios with
more than 2 inputs are generally worse, because for such
scenarios we cannot apply Corollary 1. The best re-
sults we have for such cases are listed in rows (ii) and
(iii). It would be of interest to find a way to overcome
this issue, perhaps by finding more direct bounds on
F (ρE|00, ρE|11), or further study of when the analysis can
be reduced to states satisfying Eq. (4) (see [21] Sec. F for
an example where the states are not pure).
Conclusion and outlook — In summary, we have found

that by using advantage distillation, the noise thresh-
olds for DIQKD with one-way error correction can be
surpassed. Specifically, advantage distillation is secure
against collective attacks up to depolarising-noise values
of q ≈ 9.1% or detection efficiencies of η ≈ 89.1%, which
exceeds the best-known noise thresholds of q ≈ 7.1% and
η ≈ 90.7% respectively for DIQKD with one-way error
correction.

Currently, we require large block sizes n to certify
positive key rates. However, small block sizes are suf-
ficient for reasonable asymptotic key rates in the device-
dependent case [14]. Tighter bounds on F (ρE|00, ρE|11)
should give similar results in DIQKD, hence this would
be an important next step. Alternatively, one could anal-
yse the finite-key security [3, 39, 40]. Since our approach
yields explicit bounds [21] on the entropies in Eq. (1),
it could in principle be extended to a finite-size security
proof against collective attacks by using the quantum

asymptotic equipartition property [41], following the ap-
proach in [40]. However, this approach is likely to require
a large number of rounds to achieve positive key rates,
which would pose a challenge for practical implementa-
tion.

Another significant goal would be extending our results
to non-IID scenarios. We conjecture that allowing co-
herent attacks will not change the asymptotic key rates,
as was the case for various device-dependent QKD and
DIQKD protocols [3, 6]. To support this, we observe that
if the measurements have an IID tensor-product struc-
ture, then the analysis of any permutation-symmetric
protocol can be asymptotically reduced to the IID case
using de Finetti theorems [14], assuming the system di-
mensions are bounded. Hence any attack that can be
modelled by simply using non-IID states (with IID mea-
surements) cannot yield an asymptotic advantage over
collective attacks (see [21] Sec. E). To find a security
proof for non-IID measurements, the entropy accumula-
tion theorem [3, 42] or a new type of de Finetti theorem
may be required.

Finally, an open question in information theory is the
existence of bound information, referring to correlations
which require secret bits to be produced but from
which no secret key can be extracted [17, 43]. There
is a simple analogue to this in the context of DIQKD,
namely whether there exist correlations which violate
Bell inequalities but cannot be distilled into a secret key
in a DI setting. Our results have a gap between the
noise thresholds at which we can no longer prove the
protocol’s security and the thresholds at which the Bell
violation becomes zero (see also [21] Sec. E, where we
outline a potential attack for q >∼ 12.8% if the users only



5

measure ε and the CHSH value). It would be of interest
to find whether this gap can be closed.
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