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We theoretically introduce a topological spaser, which consists of a hexagonal array of plasmonic
metal nanoshells containing an achiral gain medium in their cores. Such a spaser can generate two
mutually time-reversed chiral surface plasmon modes in the K- and K’-valleys, which carry the
opposite topological charges, &1, and are described by a two-dimensional E’ representation of the
D3y, point symmetry group. Due to the mode competition, this spaser exhibits a bistability: only
one of these two modes generates, which is a spontaneous symmetry breaking. Such a spaser can be
used for an ultrafast all-optical memory and information processing, and biomedical detection and

sensing with chirality resolution.

The concept of the surface plasmon amplification by
stimulated emission of radiation (plasmonic nanolaser)
[1-3] has recently been experiencing rapid development.
Spaser is similar to laser but the population inversion
is used to amplify surface plasmons (SPs) and not pho-
tons, which allows for nanoscopic spasers. Many different
types of spasers have been proposed [4-7] and demon-
strated [8-18]. The spasers were also applied to various
problems including explosives detection [19], monitoring
of the nano-environment [20, 21}, cancer therapeutics and
diagnostics (theranostics) [22].

Some spasers are plasmonic crystals that include gain
media [7, 13, 23, 24]. These belong to the class of
lasing spasers [7], which are nanostructured plasmonic
metasurfaces consisting of a periodic lattice of individ-
ual spasers. Due to interactions in the near-field, the
individual spasers lock in phase to generate temporaly-
and spatially-coherent fields. However, such a fundamen-
tal question as the effects of topological properties (the
Berry curvature) [25, 26] of the plasmonic Bloch bands
has not yet been investigated.

Recently, a groundbreaking work has been carried out
to obtain a topological lasing in a plasmonic-photonic
(diffractive) lattice of honeycomb symmetry [27]. The
plasmonic lasing was observed at the K-points but only
in a mode of the A} symmetry, which is a singlet rep-
resentation, which does not possess a chiral topological
charge.

In this Letter, we propose a topological spaser that
is a deeply-subwavelength two-dimensional (2d) crystal
(metasurface) with a honeycomb symmetry built of two
different triangular sublattices, A and B — see Fig. 1. A
metaatom of such a lattice is a plasmonic metal nanoshell
containing an achiral gain medium, similar to the spaser
of Ref. 3. The A- and B-sublattices of such a topolog-
ical spaser differ in size and shape of the constituent
nanoshells (see the caption to Fig. 1), so their individ-
ual spasers have different eigenfrequencies. A natural ex-
ample of a honeycomb lattice consisting of two different
sublattices is provided by the transition metal dichalco-
genide (TMDC) crystals [28-30].

The spasing eigenmodes are SPs that should be clas-
sified corresponding to irreducible representations of the
symmetry point group of the lattice, which is Dsp [31].
This group has six representations, of which E’ is a
two-dimensional (doublet) representation with the de-
sired properties — see Supplemental Materials (SM). It
describes two degenerate modes time-reversed to each
other, which carry topological charges of Qr = +1 defin-
ing their chirality; their local fields rotate in time and
space in the opposite directions.

For the proposed topological spaser, we will show
that the degenerate eigenmodes at the K- and K’'-points
strongly compete with each other, making such a spaser
bistable: either Q7 = 1 or Q7 = —1 mode can generate.
These spasing modes are topological Berry plasmons [32].
However, in Ref. 32, the system’s chirality was due to the
induced valley polarization. In a sharp contrast, in our
case the system is originally achiral and 7 -reversible: no
integral Berry curvature or magnetic field are present;
the chirality is self-organized due to the mode compe-
tition causing a spontaneous violation of the T -reversal
and o) -reflection symmetries.

The quasistatic SPs eigenmodes [33] are electric poten-
tials, @,k (r), characterized by lattice momentum k and
band index v, which can be found from the quasistatic
equation [34]

VIO(r)Veuk(r)] = 5,V pux(r), (1)

where 1 > s, > 0 are the eigenvalues, and ©(r) is the
characteristic function, which is 1 inside and 0 outside
the metal. These satisfy an orthonormality condition:
I Vo Vi d®r = 6y b

We employ the tight-binding approximation where the
on-site states are the modes of isolated metal nanoshells,
and the coupling between them is the nearest-neighbor
dipole interaction. For each nanoshell, we consider two
eigenmodes constituting a basis for the E’ doublet repre-
sentation of the D3, point symmetry group, <p£§ ) Yim,
where Y7, are the spherical harmonics, m = +1, and
a = A or B. These eigenmodes have the electric fields in
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FIG. 1: Honeycomb array of metal nanoparticles built of two
inequivalent sublattices: A and B. Sublattice A consists of
plasmonic metal nanoshells with the inner radius of 8 nm and
the outer radius of 14 nm while sublattice B consists of similar
nanoshells with the inner radius of 8 nm and the outer radius
of 16 nm. The gain medium is placed inside the nanoshells.
The lattice bond length is set as 50 nm. The primitive unit
cell of the honeycomb crystal structure is shown by the red
parallelogram. The supercell, which describes the periodicity
of the SP’s at both the K- and K'-points, see Eqs. (9)- (12),
is marked by the yellow parallelogram.

the xy-plane of the lattice and are coupled by the dipole
interaction.

The eigenmodes cpg,? ) of an isolated nanoshell of a sub-

lattice « = A, B satisfy the following equation [cf. Eq.

(]
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where ©(®)(r) is 1 inside the metal of nanoshell a and 0
elsewhere, and r is relative to the center of this nanoshell.
The solution of Eq. (2) can be expressed as an expansion
over the spherical harmonics, Yi,,, see SM.

We express the quasistatic potential for a mode with
quantum numbers v, k as a sum over the lattice and m =
+1,

L¢01/k Z Cukm
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where R(a) is the lattice vector of the nanoshell j center

in sublattice . Expansion coefficients C(km satisfy the
tight-binding equations

Z Ham a’m/’ Cl(/k'n)q’ = SVkCVkm . (4)
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FIG. 2: (a) Band structure of honeycomb array of metal

nanoshells. Due to the broken inversion symmetry, there are
band gaps at the K- and K’'-points. The spasing SP modes
at the K- and K'-points are indicated by open circles; the ar-
rows indicate the direction of the rotation of the local modal
fields for the corresponding valleys. (b) Snapshot of profile
of an SP electric field at the valence band in the K-valley
at a certain instance of time. Only the SPs at sublattice A
are excited. The color bar to the right codes the modal field
amplitude.

Here the nearest-neighbor tight-binding Hamiltonian is

Hoem,o/m’ =

(@)
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where j denotes a lattice site, and j’ are the nearest-
neighbor sites.

The solution of Eq. (4) produces four bands whose dis-
persions are shown in Fig. 2(a). Due to the broken inver-
sion symmetry owing to the sublattices A and B being
inequivalent, there are band gaps opened at the K- and
K’-points.

The structure of SPs at these points is the following.
At either the K-point or the K’-point, the SP modes are
excited in the real space only on a single sublattice A —see
an illustration in Fig. 2(b). The SPs at the K- and K’-
points are mutually time-reversed: the magnetic quan-
tum numbers are m = +1 corresponding to the topolog-
ical charges Q7 = +£1, and the phase shifts between the
nearest sites on the A sublattice are +2m/3, respectively
— see Fig. 3(a)-(d). Below we assume that the frequency
of the optical transitions in the gain medium is equal to
the frequency of SPs in the valence band at the K- and
K'-points — see Fig. 3(e).

The SP’s at the K- and K’-points have equal frequen-
cies, wyK = wWyK’, as protected by the 7 symmetry. We
write down the SP Hamiltonian in the second quantiza-
tion as

- R7)|x

Hsp = hw,k ( JrKCLL/K +a K/auK’> (6)
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FIG. 3: (a)-(d) The valence band SPs in the K- and K’-
valleys. For both the valleys, only the SPs at the sublattice A
are excited. For the K-valley, these are the SPs with m =1,
while for the K’-valley, the SP with m = —1 are generated.
Their phase shifts from site to site are +27/3, respectively.
The SP local fields rotate in the directions shown by the red
arrows.(e) Schematic of the gain medium and metal array.
The SPs at the K- and K’-points compete for the same gain.

where &lk and a,i are the SP creation and annihilation
operators. Here the frequency w,y is found from equa-
tion Re[s(w,x)] = sux, where s(w) = €4/(€q — €m(w))
is Bergman’s spectral parameter, ¢; and ¢,,(w) are the
permittivities of the host material and the metal, respec-
tively. The corresponding electric field is given by [1]

E(I‘, t) = - Z Aykvﬁpuk(r) (&yk + &lk)7 (7)
k=K,K’
where A ik =  Amhs,x/ €as),, ) =

Re[ds(w)/dw]w=w,,]-

The gain medium is assumed to be achiral consist-
ing of chromophores with a linear transition dipole mo-
ment d®) where p is a chromophore’s number; this dipole
equally couples to both the K and K’ SP modes. The
gain medium is described quantum-mechanically using
density matrix p(®). Within the rotating wave approx-
imation (RWA), the non-diagonal elements of the den-

sity matrix can be written as (p)15 = p(P) exp(iw,kt),
while the diagonal elements determine the population in-
version, n(P) = p(p ) pgﬁ) The interaction between the
gain medium and the SP system is determined by Hamil-

tonian

Hiy ==Y E(x®,1)d®. (8)
p

Following Ref. 3, we treat the SPs quasiclassically by
replacing the creation and annihilation operators by the
respective complex c-number amplitudes ay, a,x, and
a}k/, avk’. The corresponding SP population numbers
per the composite unit cell are N = |a,,K\2 and Nk =

2
|a’VK’| .

The coupled system of equations [3], which describes

both the SPs and the gain medium, has the form

K = —Vspa,,K—|—2'NgZﬁ(p)*ﬁl(}gk7 9)
P
dl/K' = _’YspauK"i_iNgZp(p)*Q;(g)(t (10)
P
AP — _4Im ﬁ(p) Z Q(p) l(g{) +
k=K K’
g1 = n) — 75(1 + @), (11)
lj(p) = —Ti2p ®) 4 jnP) Z Q(p)* (p)*' (12)
k=K K’

Here index p numbers nanoshells (all the chromophores
in a given nanoshell have the same density matrix), Ny
is the number of chromophores of the gain medium in-
side each shell, v, is the SP relaxation rate, 7, is the
non-radiative decay rate of level |2) of the chromophore,
I'y5 is polarization relaxation rate for the |2) — |1) tran-
sition of the chromophores, g is the pumping rate per
a chromophore, and Q(p) FA Vo (r®)d®) is the
Rabi frequency In computatlons we set: eg =2,d =10
debye e =514, yop = 4.1 x 1013 571, T'jp = 2.1 x 10M

1 and 72 = 4 x 10'? s71. We used dielectric data [35]
for silver as the nanoshells’ metal.

The Rabi frequencies, foﬁ and Ql(f;){,, are periodic on
the lattice with the periods that are determined by the
crystal momenta K and K’, respectively. Any solution of
Egs. (9)-(12), which contains both the K and K’ compo-
nents, will be periodic on a superlattice with an eighteen-
nanoshell unit cell (“supercell”) shown in Fig. 1. The
summation over p in Egs. (9) and (10) is extended over
the corresponding eighteen points.

As we have already stated in the introductory part, the
specific selection of the valley where the spasing occurs is
due to random fluctuations in the initial SP number due
to quantum fluctuations, which we emulate by the initial
conditions. For Egs. (9)-(12), we set n®)(t)[;=g = —1,
which implies that initially all the chromophores of the
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FIG. 4: Dynamics of SP population per unit supercell. (a)
Temporal dynamics of the SP population. Initially the SPs
in both the valleys are present, which is case (iii) — see the
text. The pumping rate is g = 10'® s™*. (b) The stationary
number of SPs in both valleys as a function of pumping rate.
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FIG. 5: Dynamics of K-valley SP eigenmode. (a)-(d) The
distributions of the local field modulus are plotted for the
unit cell in the real space. The phases of the spaser oscilla-
tions are indicated. The color-coded scale of the local fields is
given at the left-hand side for one SP quantum per the unit
supercell. The local fields rotate in time in the direction of
the black arrow, i.e., clockwise. (e) Edge fields for K-valley
mode. The instantaneous dipole vectors are indicated by the
green arrows; the direction of the field rotation is depicted by
the curved black arrows; crystal momentum k of the mode
is shown by the straight black arrow. Each such a rotating
dipole generates a current that is normal to this dipole.

gain medium are in the ground state. Similarly, we as-
sume that initially there is no polarization, p(t)|t=o = 0.
With respect to the initial SP amplitudes, a,k and a, k-,
we consider three cases: (i) The initial SP amplitude
is small and located only at the K-point where we set
a,k = 0.1 and a, k- = 0; (ii) The same as the previous
case but with the SP amplitude located at the K’-point,
a,k = 0 and a,xs = 0.1; (iii) The SP’s are initially
present at both the K- and K’-points but with different
amplitudes, a,x = 1 and a,x = 0.2.

We start with case (iii) where initially both the K-
and K'-valleys are weakly populated, with a higher pop-
ulation at the K-point, which emulates a random initial
condition created by quantum fluctuations. The pump-
ing begins at ¢ = 0 with a rate of g = 10'3 s~!. The
dynamics of the SP populations in both the valleys as a

function of time t after the beginning of the pumping is
displayed in Fig. 4(a). As we see, after the initial period
of decay and relaxation oscillations, the population of the
dominant K-valley starts growing exponentially and then
levels off becoming stationary with the SP population
Nk = 150. At the same time, the minor SP population,
Nk, decays exponentially for ¢ = 200 fs. This occurs
due to a strong competition of the K- and K’-modes for
the common gain. At the same time, the decay to zero,
Ng/ — 0, implies that there is no cross-mode talk, which
is due to the topological protection: these two SP modes
carry conserved topological charges Qr = +1. Due to
the T-symmetry, the valleys are symmetric: starting with
the K’-valley with a dominant SP population, the final
population will only be in that valley. Thus the topologi-
cal spaser is a topologically-protected symmetric bistable
device.

The kinetics of the topological spaser, i.e., the depen-
dence of the stationary SP population numbers, Ng and
Ny for t — o0, as functions of the pumping rate g,
is illustrated in Fig. 4(b) for case (i) when only the K-
valley has a non-zero initial population: Ng = 0.01 and
Nx/=0. There is a pronounced threshold after which the
SP population in the K-valley grows linearly with the
pumping rate. The population in the K’-valley remains
zero due to the topological protection. Similarly, in case
(ii), the SP population will be amplified and remain only
in the K’-valley.

The dynamics of the real-space distributions of the lo-
cal fields in the topological spaser is shown in Fig. 5 (a)-
(e) for the case of the K-valley generation (see also SM for
the K’ mode). The fields are normalized to one SP in the
unit supercell. This distribution contains three dipolar
fields localized on the A-sublattice nanoshells, which ro-
tate clockwise in the optical cycle. This field distribution
is generally chiral and compliant with the E’ represen-
tation of the Ds;, group. At a given moment of time,
this field distribution can also be described as a chiral
lattice wave propagating in the clockwise direction along
the unit cell boundary. The 2d E’ representation also
describes a mode with the opposite (counter-clockwise)
chirality, which can be obtained by an application of ei-
ther T or o] symmetry operations.

The present topologically-charged E’ spasing mode is
indeed dark: obviously, it does not possess a net dipole
moment. However, there is a non-zero chiral current
propagating unidirectionally clockwise (for Qr = 1) or
counterclockwise (for Q7 = —1) within the A-sublattice
unit cell. Such currents for the neighboring cells cancel
out each other. However, there will be an uncompen-
sated chiral current at the edge of the 2d plasmonic lat-
tice, which is illustrated in Fig. 5 (e). The corresponding
local fields resemble a field of a plasmon polariton prop-
agating clockwise along the edge despite the absence of
the edge states, similar to the edge plasmon polaritons
in Ref. [32].



There is the second E’ mode of the same frequency,
which is related to the above-discussed right-rotating one
by the application of either 7 or o] symmetry opera-
tions. That mode is generated in the K’-valley; it is
rotating counter-clockwise within the unit cell and prop-
agating counter-clockwise along the edge. The choice
of which one of these modes will be generated is ran-
dom and is a spontaneous violation of the 7- and o/-
symmetries. Figure 4 suggests a systematic way to break
the T-symmetry: initially pre-inject SPs with a desired
chirality at the SP frequency, wsp. In contrast, a chi-
ral (circularly-polarized) pump will have no effect on the
mode chirality because the gain medium is achiral.

In conclusion, we propose a topological spaser con-
stituted by a honeycomb lattice of spherical metal
nanoshells containing a gain medium. The two sub-
lattices, A and B, are built from two different types
of nanoshells. Such a spaser generates one of two chi-
ral plasmonic modes characterized by topological charge
Q1 = £1 whose local fields rotate clockwise or counter-
clockwise, respectively. Which of these two modes is gen-
erated is determined by a spontaneous violation of sym-
metry as defined by the initial conditions. The chirality
of the spasing mode is stable and topologically protected.
The macroscopic fields of the spasing mode are localized
along the edge of the lattice despite the absence of the
edge states. These edge fields propagate clockwise (for
Q1 = 1) or counter-clockwise (Q7 = —1). Due to a very
high lattice momentum k = K or k = K’, they are dark
in contrast to the original lasing spaser of Ref. [7]. Never-
theless, they can be outcoupled by using a corresponding
coupler, e.g., grating. Application-wise, such a topolog-
ical spaser is a symmetric bistable that can be used for
ultrafast optical storage and processing of information.
Another class of perspective applications includes those
in biomedical sensing and detection with an advantage
of detection the chirality that biological objects typically
possess.
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