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The ground state of the Hubbard model with nearest-neighbour hopping on the square lattice
at half filling is known to be that of an antiferromagnetic (AFM) band insulator for any on-site
repulsion. At finite temperature, the absence of long-range order makes the question of how the
interaction-driven insulator is realised non-trivial. We address this problem with controlled accu-
racy in the thermodynamic limit using Self-energy Determinantal Diagrammatic Monte-Carlo and
Dynamical Cluster Approximation methods and show that development of long-range AFM correla-
tions drives an extended crossover from Fermi-liquid to insulating behaviour in the parameter regime
that precludes a metal-to-insulator transition. The intermediate crossover state is best described as
a non-Fermi liquid with a partially gapped Fermi surface.

The interaction driven metal-to-insulator (MIT) tran-
sition has been for many years a problem of central
focus for the field of strongly-correlated electron sys-
tems (see, e.g., Refs. [1, 2] and references therein).
Particularly challenging has been the quantitative, and
even qualitative, understanding of the MIT in two-
dimensional systems. Here, the basic model—the single-
band Hubbard model with nearest-neighbor hopping on
the square lattice—can nowadays be accurately emulated
and probed with ultracold atoms in optical lattices [3–8]
at ever decreasing temperatures, putting controlled ex-
perimental studies of the this problem within reach. The
model is given by the Hamiltonian

H =
∑
k,σ

(εk − µ) c†kσckσ + U
∑
i

ni↑ni↓, (1)

where µ is the chemical potential, k (quasi)momentum
with the lattice constant set to unity, niσ the number op-
erator of fermions with spin σ on the square lattice site i,
U the on-site repulsion, and εk = −2t [cos(kx) + cos(ky)].
For the description of the MIT, non-perturbative numer-
ical methods, such as the dynamical mean-field theory
(DMFT) and related cluster and diagrammatic exten-
sions [1, 2, 9–15], have played a central role. In the single-
site paramagnetic DMFT [1] solution, which becomes ex-
act in the limit of infinite dimensions, the metallic phase
at half-filling (the average density per site 〈n〉 = 1) per-
sists down to zero temperature at weak interactions. It is
separated from the Mott insulator by a first-order MIT
at a sufficiently large value of U = Uc, ending at a fi-
nite temperature with an Ising critical point. Extensions

of DMFT to small (up to 16 sites) real-space clusters
[10–12] have shown that the inclusion of short-range spin
fluctuations changes this picture substantially—a non-
Fermi-liquid (nFL) state with a Fermi surface (FS) gap
in certain momentum sectors continuously develops at a
finite U before the transition, the value of Uc is reduced,
and the slope of the first-order line is inverted.

It is, however, well known that the ground state of the
model (1) at 〈n〉 = 1 is an antiferromagnet (AFM) at any
U > 0. As revealed by Slater [16], the FS nesting, i.e. the
existence of a single wavevector Q = (π, π) that connects
any point on the FS to another FS point, makes the inter-
acting Fermi gas unstable against formation of the spin
density wave with the wavevector Q already at infinites-
imally small U . The corresponding unit-cell doubling
makes the ground state a band insulator. While the Mer-
min Wagner theorem [17] forbids the long-range order at
T > 0, the AFM correlation length ξ is exponentially
large at low temperature, log ξ ∝ t/T ; i.e., for practical
purposes the system is best described as a quasi-AFM.
Indeed, experiments with ultracold atoms [7] observed a
perfect AFM state in model (1) on a ∼ 10× 10 lattice at
temperatures as high as T ∼ 0.25t. Such AFM correla-
tions are explicitly truncated (and typically suppressed)
in cluster DMFT calculations unless linear cluster sizes
are comparable to ξ [18], which becomes computation-
ally prohibitive at low T even at half-filling [19]. Recent
work [2] based on the dynamical vertex approximation
(DΓA), a diagrammatic extension of DMFT capable of
capturing long-range correlations approximately, and de-
terminant quantum Monte Carlo (DQMC) simulations
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Figure 1. (Color online.) Crossover lines between the Fermi-
liquid (FL, red), non-Fermi-liquid (nFL, grey), and quasi-
AFM insulator (I, blue) regimes of the half-filled 2d Hub-
bard model (1) on the square lattice in the U -T plane ob-
tained by ΣDDMC. The solid lines fit data by the func-
tions Tan = a exp(−b/

√
U) and Tn = a′ exp(−b′/

√
U) with

{a, b, a′, b′} = {6.99, 6.51, 4.7, 6.08}. It follows that below
U = 2.5t the low-temperature physics is of the mean-field
character, while beyond U = 4t the low-temperature behav-
ior is expected to resemble that of the Heisenberg model.

indicates that the low-temperature crossover from the
Fermi liquid (FL) to the quasi-AFM insulator preempts
and precludes the MIT.

In this Letter, we aim at establishing the pic-
ture of developing an insulating AFM state with con-
trolled accuracy using the recently introduced ΣDDMC
approach [20] (a similar approach was developed in
Ref. [21]). The method deterministically sums all topolo-
gies of Feynman diagrams for self-energy (for introduc-
tion, see, e.g., Ref. [22]) by means of determinants [23, 24]
with a recursive scheme in the spirit of Rossi’s algo-
rithm [25] to extract only one-particle irreducible dia-
grams. Integration over internal variables is performed
by Monte Carlo sampling, and the thermodynamic limit
(TDL) is taken explicitly. Compared to the standard Di-
agMC approach [26, 27], where diagram topologies are
sampled stochastically, ΣDDMC enables access to sub-
stantially higher (∼ 10− 12) expansion orders and more
accurate determination of the self-energy.

Our main result is summarised in Fig. 1. At suf-
ficiently low temperature, T . 0.25t, we observe the
crossover from the low-U metallic FL state with a well-
defined FS (the red region) to the quasi-AFM insulator
with temperature-activated quasiparticles (the blue re-
gion). In between, there is a transitional nFL regime (the
grey region) bound by two lines Tan(U) (red points) and

Tn(U) (blue points): as T is lowered, the quasiparticle
gap continuously develops along the FS, first appearing
at the anti-nodal point kan = (π, 0) at Tan(U) and pro-
liferating to the nodal point kn = (π/2, π/2) at Tn(U).
Thus, the crossover involves a regime with a partially
gapped FS and damped gapless quasiparticles elsewhere
on the FS, the so-called pseudo-gap driven by extend-
ing AFM fluctuations [28–34], similar to that found at
the MIT for the model (1) in 8-site cluster-DMFT [11].
It extends over an appreciable range of parameters at
larger U (or T ). When quasiparticle properties could be
meaningfully defined (T . 0.25t), we find that already at
U & 4t the FL is lost and the self-energy reveals a charge
gap. This value is significantly smaller than the critical
Uc ∼ 5 − 6t found for the MIT in small-cluster DMFT
results [10–12]. This leaves no room for the MIT in the
Hubbard model (1) without additional frustration of anti-
ferromagnetic correlations—the FL-quasi-AFM crossover
destroys the FL before it can undergo a first-order tran-
sition everywhere where the FL can be defined. U = 4t
is the upper bound on the interaction strength beyond
which the low-T behavior is not qualitatively different
from that of the Heisenberg model. As the crossover is ex-
pected to become increasingly mean-field-like at smaller
U < 2.5t, driven by magnetic correlations with large ξ,
it is rather instructive that in this regime the crossover
temperatures Tan(U) and Tn(U) approximately coincide
and both are captured by the mean-field Néel temper-
ature ansatz a exp(−b/

√
U) with empirical parameters

that agree with estimates found in Ref. [35].

We verify our results in Fig. 1 against large-scale dy-
namical cluster approximation (DCA) calculations at
higher temperatures. DCA is a non-perturbative momen-
tum space variant of cluster DMFT with which we utilize
an auxiliary-field cluster impurity solver [9, 36, 37]. Re-
sults for cluster sizes up to 144 sites reveal very slow con-
vergence of the self-energy with cluster size. We further
illustrate the significance of finite-size errors by compar-
ing ΣDDMC results in the TDL to ΣDDMC calculations
on finite lattices.

In the FL theory, the quasiparticle residue at the chem-
ical potential is a positive number less than unity. It

is defined through lim
ω→0

∂ReΣk(ω)
∂ω (with Σk(ω) the self-

energy at the momentum k and real frequency ω). On
the Matsubara (imaginary-frequency) axis, in the low-
temperature limit, this is equivalent through a Wick ro-

tation to lim
iωn→0

∂ImΣk(iωn)
∂ωn

. In contrast, Σk(ω) in an insu-

lator exhibits a pole at ω = 0. At sufficiently low temper-
ature, when discrete values of ωn = 2πT (n+1/2) remain
closely spaced to perform the limit ωn → 0, this quali-
tative difference provides a metric to define the state: if
ImΣk(iω0) > ImΣk(iω1) for all k on the FS the state is
metallic (FL-like, referred to as FL below); when the re-
verse is true, ImΣk(iω0) < ImΣk(iω1) on the whole FS,
the system exhibits an insulating behavior by opening
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Figure 2. (Color online.) Illustration of the FL-to-insulator
crossover at T/t = 0.1: evolution of the self-energy (imaginary
part) at the two lowest Matsubara frequencies ω0 and ω1 at
the momentum kan = (π, 0) (left panel) and kn = (π/2, π/2)
(right panel) with increasing U . Colors correspond to FL,
nFL, and quasi-AFM insulator regions of Fig. 1

a quasi-gap at finite temperature. Throughout we use
a shorthand notation, ∆Σk = ImΣk(iω0) − ImΣk(iω1),
positive (negative) values of which imply FL (insulator)
states. This characterization looses its meaning in a ther-
mal state when the first frequency ω1 = 3πT is of the
order of the Fermi energy.

ΣDDMC performs a numerically exact evaluation of
the coefficients an in the Taylor-series expansion of Σ in
powers of U—which at half-filling takes on the form

Σkσ(iω, T, µ = U/2, U) =

∞∑
n=1

a2n,kσ(iω, T )U2n (2)

—up to a maximal order n∗, the truncation of the series
being the only approximation. In general, reconstruct-
ing Σkσ(iω) from its series is a problem by itself [20].
In the regime of interest, however, the crossover lines are
always within the series convergence radius, and, in prin-
ciple, the result can be obtained by taking the sum up
to a sufficiently high n∗ to ensure that the truncation
error is negligible compared to the statistical error. We
are able to compute {an} with statistical errors . 10%
up to order n∗ = 12 for temperatures T ≥ 0.1 and up to
order n∗ = 10 for 0.025 ≤ T ≤ 0.1. We further accelerate
series convergence by using the standard Dlog-Padé-type
approximants [38, 39], and verify that the systematic er-
ror of the extrapolation procedure is small compared to
the statistical error (see the supplementary material).

Fig. 2 illustrates how the crossover diagram, Fig. 1, was
obtained. It shows the variation with U of ImΣ(iω0) and
ImΣ(iω1) at the anti-nodal and nodal points (ReΣ = 0
at the FS). At U = 2t the values at ω0 are higher than
at ω1, which is typical for a FL. As U is increased, ∆Σk

shows a trend towards nFL behavior by first changing
its sign at kan (we take it as the onset of the nFL be-
haviour). Following our measure, we mark the region of
U and T where ∆Σk > 0 for all momenta on the FS as
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Figure 3. Imaginary part of the self-energy obtained by
DCA and compared to ΣDDMC at kn (left) and kan (right)
in the insulating regime, U/t = 3, T/t = 0.12 (cluster sizes
are Nc = 16, 64, 72, 128, 144).

FL (red shading). Similarly, the insulating region (blue
shading) corresponds to ∆Σk < 0 for all k on the FS.
The nFL pseudogap regime (grey) falls in between the
two: it has ∆Σk > 0 at some momenta on the FS and
∆Σk < 0 at others. Correspondingly, the nFL state is
bounded by the temperature scales Tan(U) and Tn(U)
where ∆Σk = 0 at momenta kan and kn, respectively.
As the gap proliferates along the FS between Tan(U) and
Tn(U), we expect that the heat capacity CV to T ratio
decreases, eventually reaching the asymptotic CV /T ∝ T
law due to spin waves deep in the insulating regime.

At small U , both crossover temperatures scale expo-
nentially according to the BCS solution for the mean-
field AFM transition, Tan = a exp(−b/

√
U) and Tn =

a′ exp(−b′/
√
U), with the fit parameters a = 6.99, b =

6.51, a′ = 4.7, b′ = 6.08 (see Fig. 1), suggesting the
crossover is being driven by extended AFM correlations.

At high temperature T & 0.25t, the data points corre-
sponding to ∆Σkan,n

= 0 loose their meaning as bound-
aries between FL, nFL, and insulator regimes (white re-
gion in Fig. 1). Given that ImΣ(iωn) is a negative-valued
function approaching zero at large frequencies, it is clear
that by increasing T in the FL regime ∆Σ will change the
sign marking a crossover to the thermal gas, not the nFL,
state. Nonetheless, we plot the results for ∆Σkan,n

= 0
at high temperature as TDL benchmarks for other nu-
merical techniques.

Providing the controlled extrapolation of finite-system
numerical results to the TDL has been long recognized
as important. Thus far it has been accomplished, in par-
ticular, by large-system-size studies of the 3D Hubbard
model near the AFM Néel transition [40–42]. In 2D, the
extremely slow finite-size scaling due to the exponential
growth of the AFM correlation length near the crossover
makes Fig. 1 challenging to reproduce by finite-size meth-
ods, even if they do not suffer from the fermionic sign
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problem at half-filling (cf. DQMC results for this prob-
lem in Ref. [2]). In the supplementary material, we fur-
ther illustrate the difficulty of obtaining Tan(U), Tn(U)
through extrapolation to the TDL by the example of
ΣDDMC calculations on finite-size lattices of dimensions
L × L, where any value of L is accessible at the same
computational cost.

To verify our results by an independent method we
resort to the DCA, which produces unbiased results af-
ter extrapolation to the TDL. At low temperatures the
extrapolation is extremely challenging. Figure 3 shows
DCA results for ImΣk(iωn) at U = 3t, T = 0.12t, and
various cluster sizes 16 ≤ Nc ≤ 144. At k = kn (left
panel) the results show the FL behaviour for all accessible
system sizes, while the ΣDDMC results are insulator-like.
At k = kan (right panel) the character changes from FL
to insulating as a function of Nc when cluster sizes exceed
100, reaching qualitative agreement with the ΣDDMC
data. Bigger clusters are required for a quantitatively
accurate extrapolation. Note that if the data for only
Nc ≤ 72 were available, one would be lead to conclude
that the state at U = 3t, T = 0.12t is a FL. [Similarly,
in the DQMC study of Ref. [2], small-system-size data in
what is actually a FL regime show insulator-like behav-
ior, resulting in a large errorbar of the extrapolation to
the TDL.] It is not surprising then that past work limited
to substantially smaller cluster sizes [10–12] observed the
MIT at Uc > 5t, while the TDL system is, in fact, already
insulating at smaller U . In general, finite-size effects are
less severe at higher T , and a controlled extrapolation
of DCA data to the TDL is feasible: Extrapolated DCA
results for the crossover temperatures are in quantitative
agreement with ΣDDMC for T & 0.2t (see the supple-
mentary material).

Arbitrary momentum resolution of ΣDDMC allows us
to observe the structure correlations in the momentum
space. Fig. 4 shows the Brillouin zone map of ImΣk(ω0)
and ∆Σk and relates them to the measurable with ultra-
cold atoms (quasi)momentum distribution n(k) at the
experimentally relevant T = 0.2t and three values of U
that are seen in Fig. 1 to be: in the metallic (U = 2t),
nFL (U = 3.6t), and insulator (U = 4t) regimes, respec-
tively. As U is increased, |ImΣk(ω0)| exhibits relatively
small change away from the FS and grows substantially
along the FS, with the largest value at kan and the small-
est within the FS at kn. At the same time, ∆Σk remains
positive for all k in the metallic regime, but islands of
negative values appear around kan at U = 3.6t [below
Tan(U)]. At U = 4t [below Tn(U)], ∆Σk is negative along
the whole FS, with the lowest (most insulator-like) values
around kan. Interestingly, away from the FS the change
in ∆Σk is opposite: It grows, becoming more FL-like,
upon increasing U . The corresponding n(k) shows grad-
ual smearing of the step at the FS as U increases and the
system crosses from the FL to insulating regime. This

Figure 4. (Quasi)momentum distribution n(k) (top row),
ImΣk(iωn) (middle row), and ∆Σk (bottom row) in the Bril-
louin zone at T = 0.2t and different values of U (columns).

smearing is more pronounced around kan: the diamond-
shaped region of occupied states in the metallic regime
shrinks and evolves towards a circle across the crossover,
providing an observable signature of developing correla-
tions.

In conclusion, we have revealed the scenario of the
metal-to-quasi-antiferromagnetic-insulator crossover in
the 2D Hubbard model (1) qualitatively different from
the MIT previously suggested for this system [10–12] and
in qualitative agreement with the recent DΓA [2, 13] and
DQMC [2] results. The crossover could not be captured
by the small-cluster DMFT restricted to the paramag-
netic solution, predicting the MIT instead. The insulat-
ing regime sets in at all values of U due to extended
AFM correlations that transform the system into the
quasi-AFM after an intermediate nFL pseudogap regime.
The quantitative shape of the crossover is different from
that reported in Refs. [2, 13]: it is described by the
mean-field AFM transition at small U and features a
nFL regime that transforms to insulating behavior below
U ≈ 4t. All our results are obtained with controlled ac-
curacy and offer guidance for precision experiments with
ultracold atoms in optical lattices, as well as unbiased
numerical techniques, in the ongoing effort to describe
the phase diagram of the Hubbard model. In particu-
lar, the most non-trivial correlated regime is realized for
2.5t < U < 4t and temperatures T . 0.25t. At weaker
coupling, U < 2.5t, the low-temperature behaviour is
governed by the mean-field BCS-type physics, while at
U > 4t the low-temperature state is expected to quali-
tatively resemble that of the Heisenberg model [43]. By
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continuity of the key mechanism, the long-range AFM
correlations (quantified, e.g., in Ref. [35]), this qualitative
crossover picture is valid in a range of non-zero next-to-
nearest-neighbor hopping t′ and doping δ. The question
of whether the conventional MIT scenario is realised at
certain (large-enough) t′ requires further systematic in-
vestigation.
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