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In a complementary article [1], we derived fundamental limits to radiative heat transfer applicable in near-

through far-field regimes, based on the choice of material susceptibilities and bounding surfaces enclosing arbi-

trarily shaped objects; the limits exploit algebraic properties of Maxwell’s equations and fundamental principles

such as electromagnetic reciprocity and passivity. In this article, we apply these bounds to two different ge-

ometric configurations of interest, namely dipolar particles or extended structures of infinite area in the near

field of one another. We find that while near-field radiative heat transfer between dipolar particles can saturate

purely geometric “Landauer” limits, bounds on extended structures cannot, instead growing very slowly with

respect to a material response figure of merit (an “inverse resistivity” for metals) due to the deleterious effects

of multiple scattering between bodies. While nanostructuring can produce infrared resonances, it is generally

unable to further enhance the resonant energy transfer spectrum beyond what is practically achieved by planar

media at the surface polariton condition.

Radiative heat transfer (RHT) between two bodies may be

written as a frequency integral of the form

P =

ˆ ∞

0

|Π(ω, TB)−Π(ω, TA)|Φ(ω) dω (1)

where Π(ω, T ) is the Planck function and Φ(ω) a dimension-

less spectrum of energy transfer. RHT between two objects

sufficiently separated in space (d ≫ ~c
kBT

) follows the Planck

blackbody law, but in the near-field where separations are

smaller than the characteristic thermal wavelength of radia-

tion, contributions to RHT from evanescent modes often dom-

inate, allowing Φ(ω) to exceed the far-field blackbody limits

by orders of magnitude. Moreover, because the Planck func-

tion decays exponentially with frequency, judicious choice of

materials and nanostructured geometries can yield resonances

in Φ at lower (especially infrared) frequencies, allowing ob-

servation of even larger integrated RHT powers [2–5]. How-

ever, after accounting for the effects of such tailoring, the de-

gree to which the spectrum Φ at a given frequency can be

enhanced remains an open question. The inability of trial-

and-error explorations and optimization procedures [6, 7] to

saturate prior bounds on Φ based on modal analyses [8–11] or

energy conservation [12] suggests that these prior bounds are

too loose.

In a complementary article [1], we derived new bounds that

simultaneously account for material and geometric constraints

as well as multiple scattering effects. These bounds, valid

from the near- through far-field regimes, incorporate the de-

pendence of the optimal modal response of each object on

the other while simultaneously being constrained by passivity

considerations in isolation. They depend on a general material

response factor (“inverse resistivity” for metals) [12],

ζ =
|χ|2
Im(χ)

, (2)

without making explicit reference to specific frequencies or

dispersion models, and are domain monotonic, increasing

with object volumes independently of their shapes. Conse-

quently, our bounds are applicable at all length scales, from

quasistatic to ray optics regimes, do not suffer from unphysi-

cal divergences with respect to vanishing material dissipation

or object sizes [12], and can be tailored to account for specific

object shapes as needed.

In this article, we apply the aforementioned bounds on the

spectrum Φ to two situations of practical interest, compar-

ing predictions to prior bounds based on energy conserva-

tion [12], tight only in the quasistatic regime, or Landauer-

like modal summations [8–11], tight only in regimes where

material dissipation effects can be ignored. Specifically, we

consider limits on RHT between dipolar particles as well as

extended structures of infinite area and arbitrary shapes re-

stricted to the near field: domain monotonicity means that a

bound on a planar domain of infinite extent is a bound on any

nanostructured geometry contained within. We find that our

exact bound for dipolar particles is able to reach Landauer

limits when ζ exceeds a certain threshold; in contrast, bounds

that neglect the interplay between material and radiative con-

straints overestimate possible material enhancements, diverg-

ing with increasing ζ. For extended structures, we find that

the bound grows only weakly (logarithmically) with respect

to ζ, making the neglect of the interplay of material and ge-

ometric constraints even more apparent. Fundamentally, pre-

vious limits [12], in analogy with Kirchhoff’s law [2, 4], as-

sumed that thermal fields produced within a given body in iso-

lation can be perfectly absorbed by others in proximity, while

neglecting the extent to which multiple scattering between

bodies counteracts such absorption, explaining the aforemen-

tioned performance gap. Finally, we discuss practical implica-

tions and design guidelines for structures enhancing NFRHT:

nanostructuring improves P by tailoring infrared resonances

in Φ, but cannot significantly enhance Φ at peak values be-

yond that seen in resonant planar media. While our bounds

apply directly to the spectrum Φ, they can be generalized to

heat transfer over finite bandwidths assuming the spectrum at

each frequency can be optimized independently.

General bounds.—We now briefly recapitulate the bounds

on RHT between bodies A and B derived in detail in [1] and

describe their salient features. These bounds are derived for
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Bound Formula
Material

factor

Bounded

per channel

Φopt

∑
i

1
2π

Θ(ζAζBg
2
i − 1)

+
∑

i
2
π

ζAζBg2i
(1+ζAζBg2i )

2
Θ(1− ζAζBg

2
i )

Yes Yes

Φqs

∑
i

2
π
ζAζBg

2
i Yes No

ΦL

∑
i

1
2π

No Yes

Table I. Summary of various bounds on NFRHT limits. Φopt cap-

tures radiative and geometric constraints via the singular values {gi}
of the vacuum Green’s function G

vac
BA, and material constraints via

the response factors ζp =
|χp|

2

Im(χp)
for p = {A,B}. Θ is the Heavi-

side step function. As described in the main text, restricted versions

of Φopt each capture different facets of this bound.

bodies p ∈ {A,B}with arbitrary homogeneous local isotropic

susceptibilities χp and arbitrary shape and size. They depend

on material constraints, particularly passivity (nonnegativity

of far-field scattering by each object in isolation and in the

presence of the other), encoded in the material response fac-

tors ζp = |χp|2/ Im(χp), and on geometric constraints en-

coded in the off-diagonal vacuum Maxwell Green’s function

Gvac
BA, which solves [(c/ω)2∇× (∇×) − I]Gvac = I. In par-

ticular, the bounds rest on the singular values {gi}, which we

term “radiative efficacies”, obtained from a singular-value de-

composition,

G
vac
BA =

∑

i

gi|bi〉〈ai|, (3)

where |ai〉 and |bi〉 are the corresponding right and left singu-

lar vectors, respectively. The radiative efficacies measure how

strongly these bases are coupled by electromagnetic waves,

and are domain-monotonic, increasing with increasing do-

main volume even (surprisingly) beyond the near-field.

We list the relevant bounds in Table 1. The main results of

this paper rely on the upper bound Φopt, which we refer to

as an “exact bound” in that it is valid from the near- through

far-field regimes, though below we focus only on near-field

effects. Φopt is domain monotonic in that it always increases

with increasing object volumes, and this comes from the do-

main monotonicity of gi. Therefore, one can choose to eval-

uate the bound in a domain of high symmetry enclosing the

objects of interest, representing a fundamental geometric con-

straint in analogy and in combination with material constraints

imposed by a specific choice of ζp. We clarify that interfer-

ence and wave effects will of course be important to comput-

ing the actual spectrum Φ for two specific objects, but these

effects are somewhat less immediately relevant for computing

Φopt between generic domains.

The expression for Φopt shows that optimal heat transfer

is achievable if the modes of the response of each body co-

incide with the modes of the vacuum Green’s function Gvac
BA

(whereas using the modes of the total Green’s function GBA

would yield Φ itself for a specific system, not a general bound

on Φ). For each channel i, each term may be physically in-

terpreted as follows. The first term 1
2π , which is the max-

imum per-channel contribution to Φopt, corresponds to the

per-channel Landauer limit [8–11, 13, 14]. A given channel

i attains this only if ζAζBg
2
i ≥ 1, meaning that while certain

channels efficiently couple electromagnetic fields propagating

in vacuum between the two bodies can readily saturate their

Landauer limits, other channels instead require larger material

response factors ζp for this to occur. In contrast, the total Lan-

dauer bound ΦL assumes saturation of every channel i (the

first term) regardless of material response or geometric con-

figuration. The second term 2
π

ζAζBg2

i

(1+ζAζBg2

i )
2 never exceeds the

per-channel Landauer limit of 1
2π due to material limits, and

corresponds to each body attaining its maximum absorptive

response in isolation for the respective incident fields |ai〉 and

|bi〉 for channel i in order to satisfy passivity constraints; the

numerator corresponds to the contribution from absorption of

each body in isolation, while the denominator captures mul-

tiple scattering effects between bodies. Note that if material-

limited contributions were to be taken over all channels, not

just those for which ζAζBg
2
i < 1, this would represent perfect

absorption by each body in isolation for all channels. Such

a situation can arise for bodies near polaritonic resonances,

so we use this as a metric for how close Φ for uniform po-

laritonic media in each domain can practically approach Φopt.

The “quasistatic bound” Φqs accounts for material response

constraints but neglects the effects of multiple scattering be-

tween bodies, so it is tight only in quasistatic systems, and its

contributions per channel may be unbounded [12]. In [1], we

proved that these bounds satisfy the inequalities

Φopt ≤ Φqs,ΦL (4)

regardless of the particular bounding domain. Thus, we com-

pare them for specific topologies of interest in the asymptotic

near-field (nonretarded) regime.

Dipolar bodies.—We first consider NFRHT between either

two dipolar particles or a dipolar particle and an extended

bulk medium of infinite area and thickness [Fig. 1(a)], en-

closed within spherical or semi-infinite bounding domains, as

detailed in the supplement [15]. The dipolar limit implies that

if V is the volume of a dipolar particle and d is the separation

from the other body, then V 1/3

d
≪ 1, and no higher-order par-

ticle multipoles should matter. This also implies that there are

only 3 degrees of freedom or singular values (i.e. polariza-

tions) and therefore 3 channels. In either case, we can imme-

diately write the Landauer limit as ΦL = 3
2π . The asymptotic

near-field (nonretarded) radiative efficacies are g1 = g2 =
√
κ

4π
and g3 = 2g1 for two dipolar domains of volumes VA,B and

separation d with κ = VAVB

d6 , and g1 = g2 =
√

κ
64π and

g3 =
√
2g1 for a dipolar domain of volume V at a distance d

above a semi-infinite planar bulk domain with κ = V
d3 .

In both cases, the quasistatic bound depends linearly on the

product ζAζB, which explains why for increasing material re-

sponse factors (assuming fixed volumes and separations) the
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Figure 1. Comparison of Φopt (orange) to Φqs (purple) for (a) two dipolar bodies of volumes VA,B (thin lines, κ = VAVB/d
6) or a dipolar of

volume V body and an extended structure (thick lines, κ = V/d3), (b) two extended structures of infinite thickness and area A, or (c) or two

extended structures of finite thickness h. ΦL is also shown in (a). Note that bounds between two extended structures are normalized by A/d2.

bound eventually crosses the Landauer limits and never satu-

rates. By contrast, Φopt monotonically approaches ΦL from

below with increasing material response factors (e.g. small

dissipation). We note that whether the dipolar volume is near

another or an extended domain, the smallest two radiative ef-

ficacies are equal to each other and correspond to the two axes

perpendicular to the line of separation, while the largest radia-

tive efficacy is larger than the smaller two by different factors

depending on the particular case. This dependence implies

that for the Landauer bounds to be fully saturated, the optimal

net response of each body cannot be isotropic, even though

the underlying susceptibilities are assumed to be isotropic;

the optimal dipole should instead arise for an oblate ellip-

soidal shape whose aspect ratio is a function of gmax/gmin,

while the optimal extended structure (assuming an isotropic

particle) should be textured in order to break homogeneity.

However, in both cases, if the material-limited contributions
2
π

ζAζBg2

i

(1+ζAζBg2

i )
2 are used for every channel, the resulting Φ is

only 10% smaller than Φopt at
√
ζAζBκ ≈ 10, where the

dipolar particle size is comparable to the skin depth. Such

a situation arises when the surface polariton condition is met,

corresponding to Re(1/χ) = −1/2 for a uniform planar bulk

or Re(1/χ) = −1/3 for an isotropic dipolar sphere. Thus, we

find that given appropriate polaritonic materials, nanostructur-

ing enhances Φ little over uniform high-symmetry structures.

Extended structures.—We now consider NFRHT between

two extended structures of infinite area A separated by a dis-

tance d. In this case, there is an infinite continuum of par-

ticipating channels, labeled by the two-dimensional in-plane

wavevector k, and the sum over channels i becomes
∑

i →
A
˜

d2k
(2π)2 . Furthermore, even after normalizing to the area,

the Landauer bound ΦL/A =
˜

1
2π

d2k
(2π)2 diverges, so we do

not consider it further. The remaining bounds Φopt and Φqs,

after multiplying by a common factor of d2/A, only depend on

the product of material factors
√
ζAζB and on no other length

scales in the near-field.

As we show in the supplement [15], the asymptotic near-

field (nonretarded) radiative efficacies g(k) = e−|k|d/2 for

two planar semi-infinite bounding regions yield simple ana-

lytical forms for the bounds, with

Φopt ×
d2

A
=

1

4π2
ln

(

1 +
ζAζB
4

)

+
Θ(ζAζB − 4)

8π2
×

[

ln(ζAζB) +
1

4

[

ln

(

ζAζB
4

)]2

− 2 ln

(

1 +
ζAζB
4

)

]

,

(5)

while Φqs × d2/A = ζAζB/(16π
2). As observed in

[Fig. 1(b)], both bounds converge to one another for small

ζAζB. As ζAζB increases, the quasistatic bounds overestimate

the extent to which NFRHT can be optimized due to its simple

linear dependence on ζAζB, while the exact bound grows with

respect to ζAζB in a much slower logarithmic fashion. More-

over, in (5), the first term represents the material-limited con-

tributions for every channel k, achievable by homogeneous

isotropic planar bulk media at the surface polariton resonance

condition Re(1/χ) = −1/2. The correction due to progres-

sive saturation of the Landauer bounds, given by the second

term in (5), diverges (due to the divergent ΦL) so slowly that

for practically achievable ζ, Φopt is essentially achieved by

planar polar dielectric bulk media. Thus, even more so than

for dipolar bodies, there is very little room for enhancing Φ
through nanostructuring compared to what can be achieved

by planar polar dielectric media.

We also evaluate Φopt and Φqs for planar films of finite

thickness h [Fig. 1(c)], where each of these bounds only de-

pends on d and h via the common term A
d2 and a function that

depends only on ζAζB and the ratio h/d. Here, the radiative

efficacies are g(k) = e−|k|d

2 (1−e−2|k|h). We find that for thin

films (compared to the separation), Φopt converges to Φqs for

decreasing thickness at each value of ζ =
√
ζAζB, consistent

with decreasing multiple scattering between bodies. However,

as the thickness increases even to h/d ≈ 0.1, each of these

bounds quickly approaches its respective bulk asymptote (the

limit h/d → ∞). Moreover, the logarithmic scale on the plot
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Figure 2. Comparison of Φqs(ω) (purple) and Φopt(ω) (orange) for

extended bodies to planar heat transfer Φplanar(ω) (black) at fre-

quencies ω relevant to the Planck function at typical experimental

temperatures, corresponding to Au (dot-dashed), doped Si (dashed),

and SiC (black). Also shown with labeled dots are the maximum Φ
of representative nanostructured Au [17] and doped Si [7] surfaces.

Φqs for Au is several orders of magnitude above the plotted range.

makes clear that these asymptotic values of Φqs grow linearly

with ζAζB, whereas the corresponding growth of Φopt is log-

arithmic. Note that if the material-limited contributions were

instead used for every channel, representing planar films of

finite thickness at the surface polariton resonance condition

(depending on h), the result Φ would be practically indistin-

guishable from Φopt. This again suggests that while reach-

ing the exact bounds for a given thickness h would require

nanoscale texturing, the bounds can be practically reached by

planar films of the same thickness and appropriately chosen

materials, in line with previous observations restricted to one-

dimensionally periodic media [16].

Having considered bounds for generic materials with arbi-

trary ζ, we now turn to bounds for realistic materials of sus-

ceptibility χ(ω) (using the corresponding definition of ζ(ω)).
In particular, we compare the power spectrum Φplanar(ω) ×
d2/A associated with identical planar films [6, 12] to the exact

and quasistatic bounds in Fig. 2, specifically considering gold

(Au), doped silicon (Si), and silicon carbide (SiC) as represen-

tative materials. The largest heat transfer observed in specific

nanostructured Au [17] and Si [7] surfaces studied in the past

are also included for comparison. (We employ Drude disper-

sions for Au [17] and Si [7], and a phonon polaritonic disper-

sion for SiC [18].) In the infrared where the Planck function

is considerable (at typical experimental temperatures, T .

1000 K), Φqs for all of these materials is significantly larger

than the corresponding Φopt and is highly sensitive to mate-

rial dispersion; as a specific example, the quasistatic bound for

Au lies significantly above the upper limits of the plot over the

entire range of frequencies shown. By contrast, the logarith-

mic dependence of Φopt on ζ means that it will generally be

much less sensitive to changes in material dispersion except

near polariton resonances, which Si and SiC feature in the in-

frared. We find that Φplanar is consistently much smaller than

either Φqs or Φopt for Au owing to the lack of infrared reso-

nances; the Au nanostructures of [17] improve on the results

for plates by two orders of magnitude, but still fall more than

two orders of magnitude shy of Φopt at that frequency. The

outlook is more pessimistic for polar dielectrics like doped Si

or SiC. In [7], nanostructuring Si into a metasurface increases

the integrated NFRHT power P by creating lower-frequency

resonances in Φ. However, this does not increase the peak

values of Φ above Φplanar, which never reaches its bound be-

cause the dispersion of Si prohibits the planar surface plasmon

resonance condition Re(1/χ) = −1/2 from being reached.

Meanwhile, SiC plates exhibit a power spectrum Φplanar that

nearly touches Φopt at two points, the smaller of which is the

material resonance where the losses become so large that Φopt

and Φqs coincide (as we have that shown multiple scattering

between bodies becomes irrelevant for large dissipation), and

the larger of which is a polaritonic resonance where Φopt is

nearly constant while Φqs is larger by a factor of 50. We

note that for each of these materials at polaritonic resonances,

Φplanar × d2

A
= 1

4π2 ln
(

1 + ζAζB
4

)

is exactly the material-

limited contribution to (5), which is only marginally smaller

than the squared logarithmic dependence of Φopt as a whole.

Concluding remarks.—The results above suggest that apart

from tailoring resonances in the infrared to improve P (es-

pecially useful for metals), nanostructuring of either dipo-

lar or extended media cannot produce significantly better re-

sults for Φ than resonant spherical or planar objects, even-

tually saturating or exhibiting a logarithmic dependence on

ζ = |χ|2/ Im(χ) in each case. At first glance, this is a surpris-

ing contrast to the success of nanostructuring in enhancing the

local density of states [19]. This dichotomy can be understood

as a consequence of finite-size effects: a dipole radiator does

not scatter fields and hence an infinite number of modes can

participate in absorption, but this cannot hold for objects of

finite size.

While we have focused on NFRHT at individual reso-

nance frequencies, our bounds can easily be extended to in-

tegrated RHT P via (1), specifically by defining Popt =
´∞
0 |Π(ω, TB) − Π(ω, TA)|Φopt(ω) dω and using compar-

isons like Fig. 2 to guide such assessments, given that Popt

will depend on the material dispersion properties under con-

sideration. Typically, P is increased by exploiting narrow res-

onances of bandwidth ∆ω ∼ ω Im(χ)
|χ| in the spectrum Φ in

low-loss materials, so this permits approximate bounds on the

integrated heat transfer [12],

Popt ≈
ω Im(χ)

|χ| Φopt(ω)|Π(ω, TB)−Π(ω, TA)|, (6)

for two bodies of the same susceptibility χ. For dipolar bod-

ies, Φopt reaches a maximum with respect to ζ and never di-

verges, while for extended structures the divergence is log-

arithmic. Hence, beyond a threshold, any increase in Φopt

from larger material response will be accompanied by a cor-

responding decrease in ∆ω. This suggests that regardless of
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object sizes, there exists an optimal ζ maximizing P at a finite

value. Further constraints could be obtained through stronger

sum rules arising from frequency integration [20], the subject

of future work.

Finally, we emphasize that while the above analyses fo-

cused on the near-field, which can be justified for small

enough separations (d ≪ ~c
kBT

), Φopt is in general finite at ev-

ery length scale, whereas Φqs often diverges beyond the near-

field. That said, as discussed in [1], our bounds do not explic-

itly include the effects of far-field radiative losses, which in

conjunction with multiple scattering between bodies should

provide even tighter bounds. Additionally, similar bounds

could be derived for other problems in fluctuational electro-

magnetism, including fluorescence energy transfer [21] and

Casimir forces [22], the subject of future work.
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