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Applications of randomness such as private key generation and public randomness beacons require
small blocks of certified random bits on demand. Device-independent quantum random number
generators can produce such random bits, but existing quantum-proof protocols and loophole-free
implementations suffer from high latency, requiring many hours to produce any random bits. We
demonstrate device-independent quantum randomness generation from a loophole-free Bell test
with a more efficient quantum-proof protocol, obtaining multiple blocks of 512 random bits with
an average experiment time of less than 5 min per block and with certified error bounded by
2−64 ≈ 5.42× 10−20.

A fundamental feature of quantum mechanics is that
measurements of a quantum system can have random
outcomes even when the system is in a definite, pure
state. By definition, pure states are completely uncor-
related with every other physical system, which implies
that the measurement outcomes are intrinsically unpre-
dictable by anyone outside the measured quantum sys-
tem’s laboratory. The unpredictability of quantum mea-
surements is exploited by conventional quantum random
number generators (QRNGs) [1] for obtaining random
bits whose distribution is ideally uniform and indepen-
dent of other systems. The use of such QRNGs requires
trust in the underlying quantum devices [2]. A higher
level of security is attained by device-independent quan-
tum random number generators (DIQRNGs) [3, 4] based
on loophole-free Bell tests, where the randomness pro-
duced can be certified even with untrusted quantum de-
vices that may have been manufactured by dishonest par-
ties. The security of a DIQRNG relies on the physical
security of the laboratory to prevent unwanted informa-
tion leakage, and on the trust in the classical systems
that record and process the outputs of quantum devices
for randomness generation.

Since the idea of DIQRNGs was introduced in Col-
beck’s thesis [3], many DIQRNG protocols have been
developed—for a review see [5]. These protocols gen-
erally exploit quantum non-locality to certify entropy
but differ in device requirements, Bell-test configurations,
randomness rates, finite-data efficiencies, and the secu-
rity levels achieved. We can classify protocols by whether
they are secure in the presence of classical or quantum
side information, in other words, by whether they are

classical- or quantum-proof.
The first experimentally accessible DIQRNG protocol

was given and implemented by Pironio et al. [6] with
a detection-loophole-free Bell test using entangled ions.
They certified 42 bits of classical-proof entropy with er-
ror bounded by 0.01, where, informally, the error can be
thought of as the probability that the protocol output
does not satisfy the certified claim. This required about
one month of experiment time. To improve this result
required the advent of loophole-free Bell tests and much
more efficient protocols. Such a protocol and experi-
mental implementation with an optical loophole-free Bell
test was given by Bierhorst et al. [7] and obtained 1024
classical-proof random bits with error 10−12 in 10 min.
There have been three demonstrations of quantum-proof
DIQRNGs, all with photons. The first two were sub-
ject to the locality and freedom-of-choice loopholes [8].
They obtained 4.6× 107 random bits with error 10−5 in
111 h [9], and 6.2 × 105 random bits with error 10−10

in 43 min [10], respectively. The third was loophole-free
and obtained 6.2 × 107 random bits with error 10−5 in
96 h [11].

The quantum-proof experiments described above
aimed for good asymptotic rates. To approach the
asymptotic rate requires a very large number of trials
to certify a large amount of entropy. However, many
if not most applications of certified randomness require
only short blocks of fresh randomness. To address these
applications, we consider instead a standardized request
for 512 random bits with error 2−64 ≈ 5.42 × 10−20

and with minimum delay, or latency, between the re-
quest and delivery of bits satisfying the request. In this
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work, we consider only the contribution of experiment
time to latency. The previous quantum-proof DIQRNG
implemented with a loophole-free Bell test [11] would
have required at least 24.1 h to satisfy the standardized
request—see the Supplemental Material (SM) [12].

In this letter, we reduce the latency required to pro-
duce 512 device-independent and quantum-proof random
bits with error 2−64 by orders of magnitude. For this pur-
pose, here we implement a quantum-proof protocol devel-
oped in the companion paper (CP) [13] with a loophole-
free Bell test. Unlike other demonstrations of quantum-
proof DIQRNGs, we conservatively account for adver-
sarial bias in the setting choices, and we show repeated
fulfillment of the standardized request. We obtain five
successive blocks of 512 random bits with error 2−64 and
with an average experiment time of less than 5 min per
block.

Overview of theory. We give a high-level description of
the features of our protocol. For formal definitions and
technical details, see the CP [13]. Our protocol is based
on repeated (but not necessarily independent or identi-
cal) trials of a loophole-free CHSH Bell test [14], consist-
ing of a source S and two measurement stations A and
B (see Fig. 2). In each trial, the source attempts to dis-
tribute an entangled pair of photons to the stations, the
protocol randomly chooses binary measurement settings
X and Y for the stations, the corresponding measure-
ments are performed, and the binary outcomes A and B
are recorded. We call Z = XY and C = AB the input
and output of the trial, respectively.

An end-to-end randomness generation protocol starts
with a request for k random bits with error ε. The user
then chooses a positive quantity σ (the entropy threshold
for success) and positive errors εσ, εx (the entropy error
and the extractor error, respectively) whose sum is no
more than ε. The quantity σ chosen by the user must
satisfy the inequality σ ≥ k+4 log2(k)+4 log2(2/ε2x)+6.
This inequality is sufficient to guarantee that, if the out-
puts of the experiment can be proven to have entropy at
least σ, then k uniformly random bits can be extracted.
(The randomness extractor that we use for this purpose
is Trevisan’s extractor [15] as implemented by Mauerer,
Portmann and Scholz [16]. We refer to it as the TMPS
extractor—see the SM [12].) The user also needs to de-
cide the maximum number n of Bell-test trials to run.
For simplicity, we temporarily assume that a fixed num-
ber n of trials will be executed, but in the implementation
as described in a later section we exploit the ability to
stop early.

After fixing the parameters defined in the previous
paragraph, n Bell-test trials are sequentially executed,
and the inputs and outputs are recorded as Z = (Zi)

n
i=1

and C = (Ci)
n
i=1, where Zi and Ci are the input and

output of the i’th trial. The upper-case symbols C, Ci,
Z and Zi are treated as random variables, and their val-
ues are denoted by the corresponding lower-case symbols.

Let E denote the “environment” of the experiment, in-
cluding any quantum side information that could be pos-
sessed by an adversary. The entropy of the outputs C
is quantified by the quantum εσ-smooth conditional min-
entropy of C given ZE [17]. We refer to this quantity
as the output entropy. The user can estimate the out-
put entropy as described in the next section and check
whether that estimate is at least σ. If not, the protocol
fails and a binary variable P is set to P = 0; otherwise,
the protocol succeeds and P = 1.

When the protocol succeeds, we apply the TMPS ex-
tractor [16] to extract k random bits with error ε. The
TMPS extractor is a classical algorithm that is applied
to the outputs C as well as a random seed S, and pro-
duces a bit string R. The final state of the protocol then
consists of the classical variables RSZP and the quan-
tum system E. In the CP [13], we prove that the proto-
col is ε-sound in the following sense: The error ε is an
upper bound on the product of the success probability
and the purified distance [18] between the actual state
of RSZE conditional on the success event P = 1 and an
ideal state of RSZE, according to which RS is uniformly
random and independent of ZE. For the protocol to be
useful, it is necessary that the probability of success in
the actual implementation can be close to 1, a property
referred to as completeness. With properly configured
quantum devices, it is possible to make this probability
exponentially close to 1 by increasing the number of tri-
als executed. Soundness and completeness imply formal
security of the protocol.

Estimating entropy. In the CP [13], we develop the ap-
proach of certifying entropy by “quantum estimation fac-
tors” (QEFs), a general technique that encompasses pre-
vious certification techniques against quantum side in-
formation [19, 20]. The construction of QEFs requires
first defining a notion of models. The “model” for an
experiment is the set of all possible final states that can
occur at the end of the experiment. A final state can be
written as ρCZE =

∑
cz |cz〉 〈cz| ⊗ ρE(cz), where ρE(cz)

is the unnormalized state of E given results cz.

Given the state ρCZE, we characterize the unpre-
dictability of the outputs c given the system E and the
inputs z by the sandwiched Rényi power, denoted by
R1+β

(
ρE(cz)

∣∣ρE(z)
)

where β > 0 and ρE(z) =
∑

c ρE(cz)
(see the SM [12] for the explicit expression). A QEF with
a positive power β for a sequence of n trials is a non-
negative function T of random variables CZ such that
for all states ρCZE in the model, T satisfies the inequal-
ity ∑

cz

T (cz)R1+β (ρE(cz)|ρE(z)) ≤ 1.

Informally, one main result in the CP [13] is that if at
the conclusion of the experiment the variable log2(T )/β
takes a value at least h for some h > 0, then the output
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entropy (in bits) must be at least h − log2(2/ε2σ)/β no
matter which particular state in the model describes the
experiment. Hence, for estimating entropy it suffices to
construct QEFs.

In practice, the model for a sequence of trials is con-
structed as a chain of models for each individual trial.
QEFs then satisfy a chaining property: If Fi(CiZi) is a
QEF with power β for the i’th trial, then the product∏n
i=1 Fi(CiZi) is a QEF with power β for the sequence

of n trials. To construct the QEF T (CZ), we use this
property. Moreover, since the model for each trial of our
experiment is identical, we always take the same QEF
for each executed trial. The CP [13] contains general
techniques for constructing models and QEFs, and the
SM [12] contains the details of constructing models and
QEFs for each trial of our experiment.

Experiment. Our setup is similar to those reported in
Refs. [7, 21]. A pair of polarization-entangled photons
are generated through the process of spontaneous para-
metric downconversion and then distributed via optical
fiber to Alice and Bob (see Fig. 1). At each lab of Al-
ice and Bob, a fast QRNG with parity-bit randomness
extraction [22] is used to randomly switch a Pockels cell-
based polarization analyzer (see Fig. 2). Alice’s polariza-
tion measurement angles, relative to a vertical polarizer,
are a = 4.1◦ and a′ = 25.5◦, and Bob’s are b = −a and
b′ = −a′. These measurement angles, along with the non-
maximally entangled state prepared in Fig. 1, are chosen
based on numerical simulations of our setup to achieve an
optimal Bell violation. The photons are then detected in
each lab using superconducting nanowire single-photon
detectors with efficiency greater than 90% [23]. The to-
tal system efficiencies for Alice and Bob are 76.2± 0.3%
and 75.8 ± 0.3%, allowing the detection loophole to be
closed. With the configuration detailed in Fig. 2, we can
also close the locality loophole.

In each trial, Alice’s and Bob’s setting choices X and Y
are made with random bits whose deviation from uniform
is assumed to be bounded. That is, knowing all events
in the past light cone, one should not be able to predict
the next choice with a probability better than 0.5 + εb.
We call εb the (maximum) adversarial bias. In particu-
lar, it is assumed that the quantum devices used cannot
have more prior knowledge of the random setting choices
than the adversarial bias for each trial. Specifically, we
assume that the adversarial and trial-dependent bias of
Alice’s and Bob’s QRNGs is bounded by εb ≤ 1 × 10−3.
That is, each of the setting choices X and Y has a two-
outcome distribution with probabilities in the interval
[0.5 − 1 × 10−3, 0.5 + 1 × 10−3]. The bias assumption
is supported in two ways: first by a quantum statisti-
cal model of the QRNGs, validated by measurements of
the QRNG internal operation [22], and second by the ob-
servation that the frequencies of the output bits of each
QRNG deviate from 0.5 by less than 6×10−5 on average
in a run of 21 min of trials.

FIG. 1. Diagram of the entangled photon-pair source. A 775-
nm-wavelength picosecond Ti:Sapphire laser operating at a
79.3 MHz repetition rate pumps a 20-mm-long periodically-
poled potassium titanyl phosphate (PPKTP) crystal, to pro-
duce degenerate photons at 1550 nm with a per-pulse prob-
ability of 0.0045. The pump is transmitted through a
polarization-maintaining single-mode fiber (SMF). The PP-
KTP crystal is cut for type-II phasematching and placed
in a polarization-based Mach-Zehnder interferometer con-
structed using half-wave plates (HWPs) and three beam dis-
placers (BD1, BD2 and BD3). Tuning the polarization of the
pump by a polarizer and HWP allows us to create the non-
maximally entangled state |ψ〉 = 0.967 |HH〉 + 0.254 |V V 〉,
where H and V denote the horizontally and vertically po-
larized single-photon states. The photons, along with a syn-
chronization signal, are then distributed via optical fiber to
Alice and Bob. The synchronization signal is generated by a
fast photodiode (FPD) and divider circuit which devides the
pump frequency by 800, and is used as a clock to determine
the start of a trial and to time the operation of Alice’s and
Bob’s measurements. This leads to a trial rate of approxi-
mately 100 kHz.

Protocol implementation. The goal is to obtain k = 512
random bits with error ε = 2−64. For this, we set
εσ = 0.8× 2−64 and εx = 0.2× 2−64. To extract k = 512
random bits with the TMPS extractor, it suffices to set
the entropy threshold to be σ = 1089. The implemen-
tation stages for each instance of the protocol are sum-
marized in Box 1, and more details are available in the
SM [12].

Results. Ideally, the protocol would be applied concur-
rently with the acquisition of the experimental trials. In
this case, the trials were performed three months before
the protocol was fully implemented. About 89 min of ex-
perimental results were recorded. The results were stored
in 1 min blocks containing approximately 6 × 106 trials
each. The first 21 min were unblinded for testing the pro-
tocol, and the rest were kept in blind storage until the
protocol was fully implemented and ready to be used.

From the first 21 min of unblinded results we decided
to run five sequential instances of the protocol, and for
calibration in each instance we determined to use the
10 min of results preceding to the first trial to be used
for ranodomness accumulation (see the SM [12] for de-
tails). We note that the trials for randomness accumu-
lation in one instance can be used also for calibration in
the next instance. For the protocol, we loaded the data
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FIG. 2. Locations of Alice (A), Bob (B), and the source (S).
Alice and Bob are separated by 194.8± 1.0 m (this is slightly
further than in Refs. [7, 21]). Faint grey lines indicate the
paths that the entangled photons take from the source to
Alice and Bob through fiber optic cables. The light-green
quarter circles are the 2D projections of the expanding light
spheres containing the earliest available information about
the random bits used for Alice’s and Bob’s setting choices at
the trial. When Bob finishes his measurement, the radius of
the light sphere corresponding to the start of Alice’s QRNG
has expanded to 127.3 ± 0.5 m, after which it takes an addi-
tional 222.3±3.8 ns before the light sphere will intersect Bob’s
location. Similarly, when Alice completes her measurement,
the light sphere corresponding to the start of Bob’s QRNG
has only reached a radius of 98.3 ± 0.5 m, and it will take
315.5 ± 3.8 ns more to arrive at Alice’s station. In this way,
the actions of Alice and Bob are spacelike separated. Inset:
Alice’s and Bob’s measurement apparatuses both consist of a
Pockels cell (PC), operating at approximately 100 KHz, and
a polarizer, constructed using two have-wave plates (HWPs),
a quarter-wave plate (QWP) and a polarizing beam displacer,
in order to make fast polarization measurements on their re-
spective photons. The measurement setting is controlled by
a QRNG, the photon is detected by a high-efficiency super-
conducting nanowire single-photon detector, and the resulting
signal is recorded on a time tagger, where a 10 MHz oscillator
is used to keep Alice’s and Bob’s time taggers synchronized.

and divided each 1 min block into 60 subblocks of ap-
proximately 1 × 105 trials each. The protocol was then
designed to use integer multiples of these subblocks. The
first instance of the protocol started producing random-
ness at the 22nd 1 min block. Each instance started at
the first not-yet-used subblock and used the previous 600
subblocks for calibration, then processed subblocks un-
til the running entropy estimate surpassed the threshold
σ. In each instance, this happened well before the max-
imum number of trials n determined at the calibration
stage was reached, leading to success of the instance. We
then applied the extractor to produce 512 random bits
with error 2−64.

Box 1: Overview of protocol implementation

1. Calibration

(a) Determine the QEF F (CZ) and its
power β used for each executed trial.

(b) Fix n—the maximum number of trials.

2. Randomness Accumulation: Run the
experiment to acquire up to n trials. After
each trial i,

(a) Update the running log2-QEF value

Li =
∑i
j=1 log2(F (cjzj)), where cj and

zj are the observed values of Cj and Zj .

(b) If
(
Li − log2(2/ε2σ)

)
/β ≥ σ, stop the

experiment, set the number of trials
actually executed as nact = i, and set
the success event P = 1.

3. Randomness Extraction: If P = 1, then
extract k random bits with error ε.

TABLE I. Characteristics of the five protocol instances. The
number of subblocks is approximately the number of seconds
of experiment time required. The entropy rate is estimated
by Lnact/(βnact), where nact is the actual number of trials
executed in an instance, Lnact is the running log2-QEF value
at the end of an instance, and β is the power associated with
the QEF which is used for each executed trial and determined
at the calibration stage. The trial rate in the experiment was
approximately 100 kHz.

Instance n/107 nact/107 Number β Entropy

of sub- rate/10−4

blocks

1 5.25 2.32 233 0.010 6.07

2 4.74 3.76 379 0.010 3.78

3 5.92 2.85 287 0.009 5.47

4 6.20 2.83 285 0.009 5.53

5 5.49 2.72 274 0.010 5.20

The results are summarized in Tab. I. It shows that
the experiment time required to fulfill the request for
512 quantum-proof random bits with error 2−64 is less
than 5 min on average, demonstrating a dramatic im-
provement over other quantum-proof protocols and pre-
vious experiments. The only experimentally accessible
alternative quantum-proof protocol is entropy accumula-
tion as described in Ref. [20]. We found that satisfying
the request using theoretical results from Ref. [20], with
our experimental configuration and performance, would
have required at least 6.108×1010 trials, corresponding to
169.7 h of experiment time—see the SM [12] for details.

In conclusion, we demonstrated five sequential in-
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stances of the DIQRNG protocol. For joint (or compos-
able) security of the five instances, it suffices that the
quantum devices do not retain memory of what hap-
pened during the previous instances. Without this as-
sumption, the joint security of the five instances can be
compromised as explained in Ref. [24]. In our implemen-
tation such problems are mitigated by the definition of
soundness in terms of the purified distance rather than
the conventional trace distance, but the issues arising in
composing protocols like ours need further investigation.

We have emphasized the importance of latency. To
produce a fixed block of random bits, latency is simply
the time it takes for the protocol to fulfill the request.
Above, we have neglected the classical computing time
required for calibration and extraction since this can be
made relatively small by using faster and more paral-
lel computers. For the current implementation the time
costs for calibration and extraction are detailed in the
SM [12]. The latency for our setup is limited by the rate
at which we can implement random setting choices, which
in turn is limited by the Pockels cells. Since the source
produces pulses at a rate of 79.3 MHz and we can use 10
successive laser pulses as a single trial without reducing
the quality of trials, if the Pockels cell limitation can be
overcome, the latency could be reduced by a factor of
about 80 with the current entangled photon-pair source.
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