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Single-qubit measurements are typically insufficient for inferring arbitrary quantum states of a multi-qubit

system. We show that if the system can be fully controlled by driving a single qubit, then utilizing a local random

pulse is almost always sufficient for complete quantum-state tomography. Experimental demonstrations of this

principle are presented using a nitrogen-vacancy (NV) center in diamond coupled to a nuclear spin, which is not

directly accessible. We report the reconstruction of a highly entangled state between the electron and nuclear

spin with fidelity above 95%, by randomly driving and measuring the NV-center electron spin only. Beyond

quantum-state tomography, we outline how this principle can be leveraged to characterize and control quantum

processes in cases where the system model is not known.

Introduction.– The ability to infer the full state of a quan-

tum system is crucial for benchmarking and controlling

emerging quantum technologies. In theory, this task can be

accomplished by measuring an informationally complete [1]

set of observables, whose corresponding expectation values

allow to reconstruct the quantum state of the system. In prac-

tice, measuring observables that are informationally complete

typically requires access to each system component. While

compressed sensing techniques can significantly improve the

efficiency of reconstructing low-rank quantum states [2–11],

the problem of identifying an arbitrary state of a complex

quantum system with limited measurement access (e.g., to a

single qubit only) remains [12–14]. For example, one task of

practical importance in the development of solid-state quan-

tum devices [15–19] is the complete characterization of cou-

pled spin states. However, when nuclear spins are involved,

access to the full system is limited due to their small mag-

netic moment. Even in settings where full access is currently

possible (e.g., proof-of-principle few-qubit devices), this re-

quirement becomes daunting as the complexity of the system

(e.g., the number of qubits) grows.

A typical strategy to address these challenges is to cre-

ate otherwise inaccessible observables. This can be accom-

plished by (i) deterministically applying unitary operations

that transform an accessible observable into the desired in-

accessible ones [12, 20–22], typically via properly tailored

classical fields, or (ii) randomly creating an informationally

complete set of observables by approximating random uni-

tary transformations through so-called unitary t-designs [4, 5].

However, both of these procedures can be highly demanding.

While (i) does not require full system access, it does require

identifying and accurately implementing the necessary classi-

cal fields; (ii), on the other hand, can be carried out with ele-

mentary gate operations, but typically necessitates full system

access.

Here, we provide a solution to the drawbacks of (i) and

(ii) through the observation that a random control field can

create a random unitary evolution [23] when the system is

fully controllable, i.e., when there exist pulse shapes that in

principle allow every unitary evolution to be created [24].

FIG. 1. Random-field quantum-state tomography of a multi-qubit

system when only a single qubit (dark blue) can be accessed. By

randomly driving (light blue) the qubit and measuring the expecta-

tion of any single-qubit observable M , for a fully controllable sys-

tem and sufficiently long times of the signal 〈M〉t (red), any qubit-

network state ρ can almost always be reconstructed. We experimen-

tally demonstrate this principle by reconstructing combined states of

an electron-nuclear spin system in diamond, in which only the elec-

tron spin is accessible.

We show that in this case, a randomly applied field (almost

always) yields enough information in the measurement signal

of any observable to reconstruct an arbitrary quantum state,

provided the signal is long enough. Thus, for qubit systems

that are fully controllable by addressing a single qubit, a

local random pulse, that randomly ”shakes” the total system,

allows for the reconstruction of the full state of the qubit

network by measuring only a single-qubit observable (see

Fig. 1). We experimentally demonstrate this principle in a

solid-state spin system in diamond, but due to its generality,

the presented random-field-based tomography constitutes a

broadly applicable strategy that can be readily adopted in a

variety of partially-accessible systems.

Theory.– Adopting the framework of [12, 20], we begin by

developing the theory behind random-field quantum-state to-

mography. While the following assessment is completely gen-

eral, for the sake of simplicity, we restrict ourselves to a single

random field.

Consider a d-dimensional quantum system initially in an
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unknown state ρ, whose evolution is governed by a time-

dependent Hamiltonian of the form

H(t) = H0 + f(t)Hc, (1)

that depends on a classical control field f(t) steering the sys-

tem. The time evolution of the expectation of an observable

M is then given by

〈M〉t = Tr{U †
tMUtρ}, (2)

where Ut = T exp{−i
∫ t

0 H(t′)dt′} is the time-evolution op-

erator in units of ~ = 1, with T indicating time ordering. We

assume, without loss of generality, that M is traceless. The

quantum system is said to be fully controllable if there exist

pulse shapes that allow for creating every unitary evolution.

For unconstrained control fields this is guaranteed iff the dy-

namical Lie algebra L = Lie(iH0, iHc) generated by nested

commutators and real linear combinations ofH0 andHc spans

the full space (i.e., u(d) or su(d) for traceless Hamiltoni-

ans) [24]. Using the generalized Bloch-vector representation,

we can write the initial state as ρ = 1

d
+
∑d2−1

m=1 rmBm, where

1 denotes the identity and r = (Tr{ρB1}, · · · ,Tr{ρBd2−1})

is the Bloch vector, with {Bm}d
2−1

m=1 being a complete and or-

thonormal basis for traceless and Hermitian operators. This

allows for (2) to be expressed as 〈M〉t =
∑d2−1

m=1 At,mrm,

where At,m = Tr{U †
tMUtBm}. We assume that at times

t = n∆t, with n = 1, · · · , (d2 − 1), the expectation 〈M〉t is

measured, so that we obtain d2−1 values, which are collected

in the vector y ≡ (〈M〉∆t, · · · , 〈M〉(d2−1)∆t), referred to as

the measurement record. The measurement record is deter-

mined by the set of equations

y = M[f(t)]r, (3)

where we have indicated here the explicit dependence of the

matrix M ∈ R
(d2−1)×(d2−1), with entries given by Mn,m =

An∆t,m, on the control field f(t). We call the measurement

record informationally complete if M is invertible, thereby

allowing the state ρ to be inferred via r = M−1
y.

How can we ensure that the field and the measurement in-

tervals chosen allow for inverting M? It can be seen that if

the system is not fully controllable, which is equivalent to

the existence of symmetries [25], not every ρ can be recon-

structed [12]. In contrast, for fully controllable quantum sys-

tems it is in principle possible to determine the pulses that

create an informationally complete measurement record. For

instance, this can be achieved through optimal-control algo-

rithms designed to identify control fields that rotate M into

{Bm}, so that M is diagonal. However, optimal control typi-

cally depends on the availability of an accurate model. More-

over, it can be computationally expensive, and the designed

pulses are often challenging to implement in the laboratory.

Fortunately, it was recently shown that for fully control-

lable systems a Haar-random unitary evolution (i.e., unitary

transformations that are uniformly distributed over the unitary

group [23]) is created when f(t) is applied at random over

an interval [0, T∗] [23]. The Haar-random time T∗ can be

estimated from the time required to converge to a unitary

t-design, which can be accomplished by mapping the ex-

pected evolution to the dynamics generated by a Lindbladian

and finding its gap [23]. Thus, a random field of length

(d2 − 1)T∗ along with measurements of the expectation of

M at time intervals ∆t = T∗, yields row vectors of M that

are statistically independent, due to the unitary invariance

of the Haar measure. Furthermore, since the row vectors

are uniformly distributed, with unit probability they are

also linearly independent. This leads to the result that for

almost all random pulse shapes, but a set of measure zero, the

matrix M is invertible. Hence, almost all pulse shapes allow

for reconstructing ρ by measuring the expectation of any

observableM . With further details found in the Supplemental

Material [26], we summarize these findings in the following

theorem.

Theorem. For a d-dimensional fully controllable quantum

system subject to a random field of length t = (d2 − 1)T∗,

with T∗ being the Haar-random time, the measurement record

of any observable M determined by (3) with ∆t = T∗ is

almost always informationally complete.

Since full controllability can often be obtained by acting

with a single control Hc on a part of the system only, e.g., a

single qubit [27–31], the appeal of this theorem is twofold:

under the premise of full controllability, arbitrary quantum

states can almost always be reconstructed (i) without the need

for expensive numerical pulse designs and (ii) requiring only

partial system access. Furthermore, full controllability of

systems of the form (1) is a generic property, as almost all H0

and Hc generate the dynamical Lie algebra L [32, 33]. This

leads to the general corollary:

Corollary. Full quantum-state tomography of almost all

randomly-driven quantum systems of the form (1) is possible

by reading out a single observable.

We remark that the above should be treated as a math-

ematical fact rather than a source of physical intuition.

Nevertheless, it should be noted that in cases where full

control is not achieved with a single field, adding additional

control fields can be a straightforward approach for obtaining

full controllability. In fact, if full system access is possible,

in fully connected qubit networks two controls on each qubit

are sufficient [30]. In general, a variety of algebraic tools and

criteria [24, 34], as well as numerical algorithms [25, 35], can

be used to determine whether full control is achieved with the

control field(s) at hand. Even in situations where full control

is not achievable, as long as the state and the observable

lie within the span of the dynamical Lie algebra, we expect

random-field quantum-state tomography to succeed.

Experiment.– In order to demonstrate the utility of the
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FIG. 2. (a) Schematic illustration of the two-spin system in diamond: NV-center electron spin (dark blue) and nearby carbon nuclear spin

(black), along with the level diagram of the electron spin including the fine structure of the ground state, shown below. (b) Sequence of the

applied fields: laser for initialization and read-out (green), microwave for state preparation and tomography (blue). The central panel shows

an example random pulse shape f(t) and the corresponding time trace 〈M〉t of the electronic ground-state population (bottom panel), when

the preparation stage is absent, namely the system is initially only in the polarized state. The solid black line shows the ideal case obtained by

numerical propagation of the initial state. (c) Random-field reconstruction of two different entangled states: both figures show the modulus

of the reconstructed density matrix, wherein the solid gray bars depict the tomography results and the blue transparent bars show the exact

state obtained numerically. The upper panel shows the reconstruction with fidelity 96.1% of a randomly created state, whereas the lower panel

shows the reconstruction with fidelity 94.9% of a highly entangled state (concurrence C = 0.91) created through an optimized preparation

pulse shape.

above principle, we experimentally perform the random-field

tomography of a system of two interacting qubits (d = 4). The

solid-state spin system we employ is depicted in Fig. 2(a) and

consists of the electron spin of a nitrogen-vacancy (NV) center

in diamond [36], coupled to the nuclear spin of a nearby 13C

atom via hyperfine interaction. In the ground-state triplet, the

NV center has the electronic sublevels ms = 0,±1, where

the degeneracy between the ms = ±1 states is lifted by a

magnetic field of strength B ≈ 504.7 G along the NV axis.

The first qubit is formed by the ms = 0 state, denoted by

|↑〉1, and the ms = −1 state, denoted by |↓〉1, of the elec-

tron spin [see lower panel of Fig. 2(a)]. Likewise, for the sec-

ond qubit we denote the 13C nuclear spin states with quantum

numbers mI = ±1/2 by |↑〉2 and |↓〉2, respectively. Further-

more, we represent the Pauli operators of the two qubits by

σκ
j , for j = 1, 2 and κ = x, y, z, where |↑〉j and |↓〉j are the

±1 eigenstates of σz
j , respectively. In a rotating frame such a

system is described by the Hamiltonian [26]

H0 =
ω1

2
σz
1 +

ω2

2
σz
2 +

Ω2

2
σx
2 +

gz
2
σz
1σ

z
2 +

gx
2
σz
1σ

x
2 . (4)

Since the gyromagnetic ratio of the nuclear spin is three orders

of magnitude smaller than that of the electron spin, access to

the system is effectively restricted to the electron spin, as a di-

rect read out of the nuclear spin is extremely challenging. The

electron spin is driven through a classical field, whose cou-

pling to the electron spin is described by the control Hamilto-

nian

Hc =
Ω1

2
σx
1 . (5)

This control is achieved by applying a microwave field of fre-

quency ω, which is generated by an arbitrary waveform gen-

erator (AWG) and delivered to the sample through a copper

microwave antenna, after being amplified by a microwave am-

plifier. The precise control over the AWG allows us to en-

gineer the control field f(t) with arbitrary amplitude mod-

ulations. The control field amplitude Ω1 is calibrated with

the output power of the AWG by measuring the frequency of

Rabi oscillations of the electron spin [26], i.e., for f(t) ≡ 1.

We choose a microwave frequency ω/2π ≈ 1455.5 MHz,

which, under the applied magnetic field, lies between the two

allowed transitions between eigenstates of H0 [37]. The pa-

rameters in our experiment are {ω1, ω2,Ω1,Ω2, gz, gx}/2π =
{−2.97,−6.46, 7.91,−1.39, 5.92, 1.39} MHz, with minor

variations [26], e.g., due to small drifts in the magnetic field

between different runs of the experiment, which leads to im-

perfections in the state preparation.

A system described by the Hamiltonian (1), with H0 and

Hc defined in (4) and (5), respectively, is fully controllable,

as the dynamical Lie algebra spans su(4). As an observable

we choose the population of the electronic ms = 0 state,

represented by M = σz
1 , which can easily be read out by

state-dependent fluorescence [36]. To create a random control

field we design random pulse shapes f(t) based on a truncated
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Fourier series [23]

f(t) =

K∑

j=1

Fj cos(νjt+ ϕj), (6)

with uniformly-distributed random variables: amplitudes Fj

(fulfilling the normalization
∑K

j=1 Fj = 1), frequencies

νj/2π ∈ [0, 4] MHz, and phases ϕj ∈ [0, 2π]. Due to a lim-

ited coherence time, instead of using a single random pulse

shape, in the experiment we use d2− 1 = 15 separate random

pulses to create linearly independent rows of M, thereby only

evolving the system up to a time ∆t in each run. Through-

out the remainder, we employ random pulses with K = 10
Fourier components and a length of ∆t = 0.7 µs (see Sup-

plemental Material Fig. S1), which lies well below the coher-

ence time of the microwave-driven system, and also allows for

moderate levels of noise in the measurement record [26].

As a first check of the random-field tomography we re-

construct the state after the optical ground-state polarization

with a 532 nm laser, i.e., with an empty preparation stage in

Fig. 2(b), which ideally leads to the pure state ρ0 = |ψ0〉〈ψ0|,
with |ψ0〉 = |↑〉1|↑〉2 [38]. To reconstruct this state we con-

secutively apply 15 random pulses on the electron spin. One

example random pulse shape f(t) is shown in the central panel

of Fig. 2(b), with the corresponding full time trace of the ex-

pectation value 〈M〉t depicted below. In order to reconstruct

the density operator from the obtained measurement record,

we employ a least-square type minimization [26], using the

last 10 data points of every random pulse [see Supplemental

Material Fig. S2(a)]. The resulting reconstructed density ma-

trix yields 97.7% fidelity with ρ0 [see Supplemental Material

Fig. S2(b)].

In order to demonstrate the reconstruction of non-trivial

states, as a first example, we randomly create a state by

applying a preparation pulse of the form (6) with a duration

of 0.8 µs [see Supplemental Material Fig. S3(a)], after the

initialization of the system into the state ρ0. Since we have

to preform 15 tomography pulses, and the slight drift in

the experimental parameters leads to small differences in

the states created from ρ0 through the preparation stage

before each of these pulses, the resulting state shows some

impurity. The modulus of the reconstructed density matrix

is shown in the upper panel of Fig. 2(c) (gray bars). The

reconstructed state shows a 96.1% fidelity with the state

ideally prepared (blue transparent bars) under the random

pulse. The entanglement of this state, as quantified by the

concurrence C, is given by C = 0.48. As another example,

we optimize a preparation pulse of the form (6) with a

pulse length 1.8 µs [see Supplemental Material Fig. S3(b)]

to create a highly entangled state of the two-qubit system.

The modulus of the obtained density matrix, which also

shows some impurity due to the preparation before each

tomography pulse, is depicted in the lower panel of Fig. 2(c).

The reconstructed state has a concurrence C = 0.91 and

shows a fidelity of 94.9% with the ideally prepared state. In

the latter two cases the ideal states are obtained by numerical

propagation of the initial state ρ0 under the preparation pulses.

Discussion.– We have shown that by randomly driving and

measuring a single component of a multipartite quantum sys-

tem, the quantum state of the total system can be recon-

structed. This is a consequence of the fact that the data

collected through expectation measurements of a single ob-

servable almost always contains enough information to re-

construct any state, provided the system is fully controllable

and the randomly applied field is long enough. Based on this

principle, we presented the successful experimental creation

and reconstruction of composite states of an NV-center elec-

tron spin and a nuclear spin in diamond with high fidelities.

The exponential overhead needed to reconstruct generic quan-

tum states of qubit systems is reflected in the d2 − 1 expec-

tation measurements, as well as in in the length of the ran-

dom pulse. However, numerical evidence presented in Fig. S1

of the Supplemental Material suggests that often pulses much

shorter than (d2 − 1)T∗ can yield information completeness.

We further remark that for low-rank quantum states, we ex-

pect that the number of expectation measurements required

can also be significantly reduced when random-field tomogra-

phy is combined with compressed sensing methods [3–11]. It

is also worth mentioning that in other settings, the knowledge

of the full quantum state may not be necessary; instead, in-

formation carried in expectations of only certain many-body

operators may be desired [39]. For example, this is the case in

hybrid quantum simulation [40], where such expectation mea-

surements are used by a classical co-processor to update a set

of parameters governing the quantum simulation [41–45]. We

believe that a variant of the presented random-field approach

could offer a way to extract the desired information with re-

duced overhead in accessing the system.

Besides full controllability, we also assumed knowledge of

the model describing the controlled system. This assumption

was needed to numerically calculate the unitary evolution

Ut in (3), which allowed for calculating M. However, this

assumption is not crucial, given that process tomography

can be performed without any prior knowledge of the

model [46, 47]. That is, instead of numerically calculating

Ut, the unitary evolution can experimentally be determined.

This can be achieved by additionally creating a complete set

of states, for instance through randomly rotating the unknown

state ρ. Since under the premise of full controllability

uniformly-distributed states can be created through a random

pulse shape, this implies that state and process tomography

are possible by randomly driving and measuring a single

system component without knowing system details. The

price therefore is an increase in the number of expectation

measurements needed, estimated to be O(d4) [47, 48].

However, the observation that no prior knowledge except full

controllability is needed raises an interesting prospective: it

is possible to fully control and read out a quantum system

only based on measurement data [49–51] by accessing

merely part of the system [52]. As such, under the premise

of full controllability, a quantum computer/simulator can
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in principle be fully operated by processing classical data

obtained from randomly driving and measuring a single

qubit without knowing the physical hardware the quantum

computer/simulator is made off.
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