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We predict the existence of a Floquet topological insulator in three-dimensional two-band systems,
the Floquet Hopf insulator, which possesses two distinct topological invariants. One is the Hopf Z
invariant, a linking number characterizing the (non-driven) Hopf topological insulator. The second
invariant is an intrinsically Floquet Z2 invariant, and represents a condensed matter realization
of the topology underlying the Witten anomaly in particle physics. Both invariants arise from
topological defects in the system’s time-evolution, subject to a process in which defects at different
quasienergy exchange even amounts of topological charge. Their contrasting classifications lead to a
measurable physical consequence, namely, an unusual bulk-boundary correspondence where gapless
edge modes are topologically protected, but may exist at either 0- or π-quasienergy. Our results
represent a phase of matter beyond the conventional classification of Floquet topological insulators.

Periodically driven systems host a rich variety of
phases of matter, many of which cannot be realized
by any static Hamiltonian [1–9]. Prime representatives
of this are the so-called Floquet topological insulators
(FTIs): non-interacting, driven phases of matter, whose
physical properties are characterized by a set of under-
lying quantized topological invariants [10–19]. Unlike
their non-driven counterparts, the topology of FTIs arises
directly from the unitary time-evolution, leading to ro-
bustly protected gapless edge modes even when the stro-
boscopic time-evolution is topologically trivial.

A common pattern has emerged in the classification of
Floquet topological insulators, which relates their topo-
logical invariants to those of static topological insulators
with the same dimension and symmetries. A given FTI
is found to possess all the invariants of its static coun-
terpart, plus one additional invariant of identical classi-
fication. Intuitively, this is understood by extending the
bulk-boundary correspondence to Floquet systems: un-
der periodic modulation, the energy – now, quasienergy –
becomes defined only modulo 2π (in units of the driving
frequency) and thus an additional and identically classi-
fied edge mode emerges, associated with the bulk gap at
quasienergy π.

This result has been established rigorously in systems
described by K-theory [19], and explored at great length
in the context of specific symmetries and dimension-
ality [10, 13, 15–18]. Nevertheless, one could wonder
whether these arguments leave room for more unique
topology in Floquet phases that escape this stringent
bulk-boundary correspondence.

In this Letter we answer the above inquiry in the affir-
mative, demonstrating a three-dimensional Floquet topo-
logical insulator characterized by two distinct topological
invariants: a ‘static’ Z invariant, and a uniquely Floquet
Z2 invariant. At the heart of our proposal is the Hopf
insulator (HI) [20–27], a 3D topological insulator (TI) in
the absence of symmetries, which exists beyond the stan-

FIG. 1. Depiction of the Floquet Hopf insulator’s two topo-
logical invariants. (a) The ‘static’ Z invariant is the Hopf in-
variant of the Floquet Hamiltonian HF (k), corresponding to
the linking number of the pre-images of two points (blue, red)
on the Bloch sphere. For nearby points, this equals the twist-
ing of the Jacobian (colored arrows) along a single pre-image.
(b) The ‘Floquet’ Z2 invariant classifies the micromotion op-
erator Um(k, t) ∈ SU(2), and is similarly interpreted as the
Jacobian twisting (dashed black arrows) along a pre-image,
with a reduced classification due to the larger dimensionality.

dard K-theoretic classification [28, 29] via its restriction
to two-band systems. The Z invariant of our system is
precisely the Hopf invariant of this insulator. The Z2

invariant replaces the expected additional integer invari-
ant, and characterizes the same topology that underlies
the Witten anomaly in (3+1)D SU(2) gauge theories [30–
34]. In our context, it can be understood both as a twist-
ing number extension of the Hopf invariant, as well as in
terms of gapless topological defects of the Floquet evolu-
tion. These ‘Hopf’ defects may smoothly exchange even
amounts of their topological charge, which leads to the
reduced Z2 classification. Physically, the difference in
invariants creates an atypical bulk-boundary correspon-
dence, where gapless edge modes are topologically pro-
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FIG. 2. (a) A point Hopf defect (black point) has quadratic dispersion, functioning as a strand crossing that changes the linking
number of any two eigenvectors’ pre-images (red and blue). A loop Hopf defect (black loop) has linear dispersion, and can
occur along a former pre-image. The defect charge is defined on a surface (gray, shaded) enclosing the defect. (b) Two Floquet
evolutions with different defect charges but the same topological invariants, which are connected by a smooth deformation
λ ∈ [0, 1] preserving the Floquet unitary’s band gaps. (c) The deformation is a π rotation of the 3-sphere parameterized
by (n, ξ). Images of time-slices representing the initial 0-defect (yellow), π-defect (blue), trivial Hopf invariant (gray), Hopf
invariant 1 (red), are displayed before and after the rotation. (d) During the deformation, the 0-defects (black outline) and
π-defects (solid black) become loops that link in the Brillouin zone, at which point their individual charges are undefined. The
total charge h0 + hπ is conserved, corresponding to the static Z invariant. Arrows indicate increasing λ.

tected but may occur at either 0- or π-quasienergy, de-
pending on non-universal properties of the boundary.

We are concerned with non-interacting systems gov-
erned by a space- and time-periodic Hamiltonian, writ-
ten in momentum-space as H(k, t) = H(k, t+ T ), where
H(k, t) is a matrix acting on the internal degrees of free-
dom that form the two bands of the system. Time-
evolution is captured by the unitary operator U(k, t) =

T
(
e−i

∫ t
0
H(k,t′)dt′

)
, 0 ≤ t < T . Much like static insula-

tors, one can view these unitaries in terms of the band-
structures composed by their eigenvectors and eigen-
phases. For a two-band unitary we write

U(k, t) = eiφ |z〉〈z|+ eiφ
′
|z′〉〈z′| , (1)

where φ(′)(k, t),
∣∣z(′)(k, t)〉 depend on time as well as

momentum, and the quasienergies φ(′)(k, t) are periodic.
Floquet topological insulators are Floquet-Bloch sys-

tems where the unitary is gapped at time T . The Floquet
unitary, U(k, T ), is equivalently described by the ficti-
tious, time-independent Floquet Hamiltonian, HF (k) =
−i log(U(k, T ))/T . Similar to static TIs, two FTIs are in
the same phase if one can smoothly interpolate between
them without closing the gaps of the Floquet unitary.
Focusing on systems with two gaps for simplicity, recent
work has shown that – in all settings with non-driven
analogues (i.e. in the absence of explicitly Floquet sym-
metries, e.g. time-glide symmetry [35]) – such FTIs are

characterized by two topological invariants, each with the
same classification as a static TI of the same dimension
and symmetries [10, 13, 15–19, 35].

Here, we note a finer distinction in the classification of
FTIs with fixed band number. We decompose the uni-
tary evolution into two components: the evolution over
a full period, captured by the Floquet unitary U(k, T ),
and that within a period, captured by the micromotion

unitary, Um(k, t) ≡ U(k, t)
[
U(k, T )

]−t/T
. From this de-

composition, one sees that the classification factorizes
into two, potentially distinct, invariants: a ‘static’ in-
variant classifying the Floquet Hamiltonian HF (k), and
an intrisically Floquet invariant classifying the micromo-
tion operator Um(k, t). In d space dimensions, the for-
mer classifies maps from the dD Brillouin zone to the
set of gapped Hamiltonians, identical to the scheme for
static TIs. The Floquet invariant classifies maps from the
(d+1)D Floquet Brillouin zone, parameterized by (k, t),
to SU(n), for an n-band system without symmetries [13].
These invariants are identical in all cases previously con-
sidered. However, for systems with fixed band number
they may differ.

We now introduce the Floquet Hopf insulator, a three-
dimensional Floquet-Bloch system with two bands and
no symmetries. The static invariant is the Hopf invariant
of the Floquet Hamiltonian, which we briefly review. The
gapped two-band Hamiltonian HF (k) = n(k) · σ maps
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FIG. 3. Numerical calculation of the Floquet invariant,
static invariant, and 0/π-defect charges (a) across a phase
transition (hS , hF ) = (1, 0) → (0, 1) (κ = 0 → 1) (b) along
the smooth deformation exchanging defect charge.

the 3D Brillouin zone to the Bloch sphere S2. Neglect-
ing “weak” lower-dimensional invariants [20, 36], such
maps are classified by the homotopy group π3(S2) = Z,
thus possessing an integer topological invariant – the
Hopf invariant. Expressed in terms of the eigenvec-
tors |z(k, T )〉 of the Floquet unitary, it takes the form
hS = 1

2

∫
d3k εijkAi Fjk, defining the Berry connec-

tion Ai = −i
4π (〈z|∂iz〉 − 〈∂iz|z〉) and curvature Fjk =

−i
4π (〈∂jz|∂kz〉 − 〈∂kz|∂jz〉), and where |z(k, T )〉 is related
to the Bloch sphere n(k) by n(k) = 〈z(k, T )|σ |z(k, T )〉.

The Hopf invariant has an intriguing visual interpre-
tation as a linking number. To elaborate, consider the
pre-image of any n′ on the Bloch sphere, i.e. the set of
all k that are mapped to n′ by n(k). This is generically
a 1D loop in the Brillouin zone. The topology of the HI
enters when one considers two such pre-images. In the HI
phase, any two pre-images are linked, with a linking num-
ber equal to the Hopf invariant. Intriguingly, this linking
can be equivalently viewed as a twisting of the Jacobian
of n(k) along a single pre-image [24, 37] (Fig. 1).

We now turn to the Floquet invariant. The micro-
motion operator maps the 4D Floquet Brillouin zone to
SU(2), isomorphic to the 3-sphere S3. Again neglecting
weak invariants, this is classified by the group π4(S3) =
Z2: a parity invariant, different from the integer Hopf
invariant! This invariant was previously studied as the
foundation of the Witten anomaly in SU(2) gauge theo-
ries, where a formula for it was introduced [31]. In terms
of the micromotion operator’s eigenvectors |zm(k, t)〉 and
their relative eigenphase ∆φm(k, t), we find [38]

hF =
1

4π

∫
dt d3k εijkl ∂i∆φm(k, t)Aj Fkl mod 2, (2)

where the Berry connection and curvature are defined
analogous to the non-driven case, now over space-time
indices {kx, ky, kz, t}. The Floquet invariant also relates
to the Jacobian twisting along a 1D pre-image, now in
(3+1)D (Fig. 1). The higher dimensionality leads to the
reduced Z2 classification [37, 38].

Combining the two invariants, we conclude that the
Floquet Hopf insulator has a Z×Z2 classification. A sys-

tem with arbitrary (hS , hF ) can be generated by strobing
two flat band Hamiltonians according to

H(hS ,hF )(k, t) =

{
2π
T HhS−hF (k) 0 ≤ t < T/2

− π
THhS (k) T/2 ≤ t < T

, (3)

where Hh(k) has Hopf invariant h and energies ±1. To
verify the static invariant, note that the Floquet unitary
is given by U(k, T ) = −eiπ2HhS , whose bands correctly
have Hopf invariant hS . The Floquet invariant is also
verified [38]: schematically, the contributions of the two
halves of the evolution subtract, giving Floquet invariant
hS − (hS − hF ) = hF mod 2.

It is illuminating to discuss how the Floquet Hopf insu-
lator fits in the context of Ref. [17]. Here one again views
the evolution in terms of bands, with particular attention
to fixed time-slices. If the unitary U(k, t) is gapped at
time t, one may define an instantaneous static topologi-
cal invariant C(t) from its bands, exactly as one defines
the static invariant of the Floquet unitary at time t = T .
This invariant must be constant throughout each gapped
region of the evolution, and can only change at times con-
taining gapless points. Such points are topological defects
of the evolution, and possess a defect charge equal to the
total change in C(t) across the defect. They come in two
varieties, 0- and π-defects, labelled by the quasienergy at
which the gap closes. The total charges of the 0- and π-
defects are locally conserved, and are thereby identified
as the topological invariants of the evolution. For exam-
ple, in the Floquet Chern insulator [13] the instantaneous
Chern number changes at gapless Weyl points [39], and
the integer charges of the 0- and π-Weyl points comprise
a Z× Z classification [17].

Like other topological defects, Hopf topological defects
possess an integer charge h0/π equal to the change in
the instantaneous Hopf invariant across the defect. Two
types of Hopf defect exist, each depicted in Fig. 2(a).
The first occurs a single gapless point with a quadratic
energy degeneracy. Interestingly, the Hopf invariant may
also change across loops of gapless points, with linear
degeneracy. The loops feature a Weyl cone [39] at each
point, with the frame of the Weyl cone rotating by 2π∆h
about the loop [25, 38].

How does conservation of the two integer defect charges
reconcile with the correct Z× Z2 classification? The an-
swer lies in a smooth deformation that exchanges even
charge between the 0- and π-defects, such that (h0, hπ)→
(h0 − 2, hπ + 2). This process has no analogue in previ-
ously studied FTIs and keeps both band gaps of the Flo-
quet unitary open, establishing the two configurations as
the same phase. The total charge h0 + hπ is conserved
in this process, while the individual charge hπ is only
conserved mod 2. This suggests the identifications

hS = h0 + hπ ∈ Z
hF = hπ mod 2 ∈ Z2.

(4)
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The former follows from the definition of defect charge:
the invariant at t = T equals the sum of all changes
to it throughout the evolution. We explicitly describe
the above deformation for the specific case of (h0, hπ) =
(1,−1) → (−1, 1), finding a continuous family of evolu-
tions U(k, t;λ) with defect charges (1,−1) at λ = 0 and
(−1, 1) at λ = 1 [Fig. 2(b)]. Recall that SU(2) is topolog-
ically equivalent to the 3-sphere via the parameterization
U(k, t) = ξ(k, t)1+ in(k, t) ·σ, ξ2 + n(k)2 = 1. The de-
formation acts as a time-dependent rotation of U(k, t) in
the ξnz-plane: U(k, t;λ) = Rξnz [λθ(t)]{U(k, t)}, where
the rotation angle λθ(t) interpolates from 0 at t = 0 to
λπ at times after the earliest defect.

To observe that this interpolates between the two con-
figurations without closing the Floquet gap, we exam-
ine five regions of the λ = 0, 1 evolutions [Fig. 2(c)].
Throughout the deformation, the early and late gapped
regions remain gapped with trivial topology. The middle
region at λ = 1 is gapped with eigenvectors that can be
smoothly deformed to −n, which has the same Hopf in-
variant as the eigenvectors n at λ = 0 [40]. Critically, this
equivalence does not hold for TIs described by K-theory
(e.g. the Chern insulator). Finally, the deformation in-
terchanges the location of the 0- and π- defects. Since the
intermediate invariant is unchanged, the defect charges
are flipped by the deformation.

What allows the seemingly-conserved defect charges to
change? Recall how defect charge is rigorously defined:
one encloses the defect with a surface of gapped points,
and computes the static topological invariant of the sur-
face’s eigenvectors [17]. As shown in Fig. 2(d), during the
deformation the defects become loops of gapless points.
At some value of λ, the 0- and π-defect loops link such
that it is impossible to separately enclose each defect,
causing the individual defect charges to be undefined.
This defect linking arises directly from the linking of the
HI [38]. After linking, the defects again have well-defined
charges, which may differ from their initial values.

We compute the invariants and defect charges numeri-
cally in two scenarios (Fig. 3). Across a phase transition
(hS , hF ) = (1, 0) → (0, 1), both the invariants and de-
fect charges change, following Eq. (4). In contrast, along
the smooth deformation, the invariants remain robustly
quantized while the defects exchange charge [38].

Like its static counterpart [20, 21, 27], the Floquet
Hopf insulator features gapless edge modes at smooth
boundaries between phases with different topological in-
variants (Fig. 4) [38]. An unusual situation occurs at
boundaries where the static invariant changes, but the
defect charge parities do not. Here, a gap closing is pro-
tected by the change in invariant, but may occur at either
0- or π-quasienergy, depending on details of the edge re-
gion. The anomalous Z × Z2 classification is precisely
what allows this ambiguity: since the defect charges are
only defined up to parity, neither quasienergy individu-
ally requires a gap closing, despite the change in topo-
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FIG. 4. Quasienergy spectra of the Floquet unitary at
various smooth boundaries between Floquet Hopf insulator
phases, solved via exact diagonalization [38]. Quasiener-
gies are colored according to their eigenstates’ average dis-
tance from the edge region, from localized at the edge (red)
to far from the edge (black). (a) The boundary between
(hS , hF ) = (0, 1) and the trivial phase (hS , hF ) = (0, 0),
features gapless edge modes across both band gaps despite
the Floquet Hamiltonian being trivial. (b) In contrast, we
find no gapless edge modes between phases with different
topological defect charges (h0, hπ) = (1,−1) and (−1, 1),
but the same topological invariants (hS , hF ) = (0, 1 mod 2),
demonstrating the Z2 classification of the Floquet invariant.
(c,d) Two different boundaries between the same two phases,
(hS , hF ) = (2, 0) and the trivial phase (hS , hF ) = (0, 0), fea-
turing gapless edge modes across either the 0- or π-gap.

logical invariant.

We now briefly outline potential routes for experimen-
tally realizing the Floquet Hopf insulator. A detailed pro-
posal for realizing the static version of the Hopf insulator
in dipolar spin systems was recently introduced in [27].
Interestingly, any realization of the static HI provides a
direct path to realizing the Floquet Hopf insulator, us-
ing the stroboscopic construction of Eq. (3). For exam-
ple, strobing a Hamiltonian with Hopf invariant 1 with
a trivial Hamiltonian realizes the phase hS = 0, hF = 1.
Time-evolving under a trivial Hamiltonian is straightfor-
ward: for instance, if the two bands arise from two sublat-
tices, stroboscopic trivial time-evolution can be achieved
by modulating the chemical potential on only a single
sublattice. As a specific example, in the case of ultra-
cold dipolar molecules [41–44], a staggered chemical po-
tential between two different spatial sublattices can be
achieved by using different intensities of light [27]. Fi-
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nally, the most interesting, and direct, physical signature
of the Floquet Hopf insulator is its complex structure of
gapless edge modes, and recent advances in the context
of KRb experiments [43, 44] suggest that the presence
of such modes can be probed using molecular gas mi-
croscopy [27].

Note added : After completing this work, we became
aware of Ref. [45], which also finds a Z2 index character-
izing two-band Floquet-Bloch systems in three dimen-
sions and discusses its relation to the Witten anomaly.
We note that this index comprises only part of the larger
Z × Z2 topological structure we present. Connected to
this difference, we note that the edge numerics of Ref. [45]
are performed for sharp terminations of the lattice, which
in our model are unrepresentative of general edges [38].
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