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We theoretically investigate the many-body states of exciton-polaritons that can be observed
by pump-probe spectroscopy in high-Q inorganic microcavities. Here, a weak-probe “spin-down”
polariton is introduced into a coherent state of “spin-up” polaritons created by a strong pump. We
show that the ↓ impurities become dressed by excitations of the ↑ medium, and form new polaronic
quasiparticles that feature two-point and three-point many-body quantum correlations, which, in the
low density regime, arise from coupling to the vacuum biexciton and triexciton states respectively.
In particular, we find that these correlations generate additional branches and avoided crossings
in the ↓ optical transmission spectrum that have a characteristic dependence on the ↑-polariton
density. Our results thus demonstrate a way to directly observe correlated many-body states in an
exciton-polariton system that go beyond classical mean-field theories.

While the existence of Bose-Einstein statistics is
fundamentally quantum, many of the properties of
Bose-Einstein condensates can be understood from the
phenomenology of nonlinear classical waves (see, e.g.,
Ref. [1]). In particular, the physics of a weakly interact-
ing gas at low temperatures can generally be described
by mean-field theories, involving coherent (i.e., semiclas-
sical) states. Exceptions to this arise when the strength
of interactions becomes comparable to the kinetic energy
of the bosons. Here, one has correlated states and even
quantum phase transitions, e.g., between superfluid and
Mott insulating phases [2, 3]. For condensates comprised
of short-lived bosonic particles such as magnons [4], pho-
tons [5], and exciton-polaritons (superpositions of exci-
tons and cavity photons) [6], the possibility of realizing
correlated states suffers a further restriction: the interac-
tion energy scale must exceed the lifetime broadening of
the system’s quasiparticles. For these reasons, observing
quantum correlated many-body states with such quasi-
particles remains a challenging goal.

In this Letter, we propose to engineer and probe
quantum correlations in a many-body polariton system
through quantum impurity physics. Here, a mobile im-
purity is dressed by excitations of a quantum-mechanical
medium, thus forming a new quasiparticle or polaronic
state [7, 8] that typically defies a mean-field descrip-
tion. Quantum impurity problems have been studied ex-
tensively with cold atoms, where one can explore both
Bose [9–11] and Fermi [12–18] polarons (corresponding
to bosonic and fermionic mediums, respectively). These
studies have yielded insight into the formation dynamics
of quasiparticles [17, 19, 20], and the impact of few-body
bound states on the many-body system [21, 22]. Fur-
thermore, in the solid-state context, the Fermi-polaron
picture has recently led to a better understanding of ex-

FIG. 1. Spectroscopic signature of a two-point many-body
correlated state in the probe photon transmission T (k, ω) (see
text and [26]) as a function of momentum and energy. (a) In
the absence of pumping. The upper (UP) and lower (LP)
polaritons are shown as solid lines, while the dotted lines cor-
respond to the bare photon (C) and exciton (X) dispersions.
(b) With a σ+ pump resonant with the LP at zero momentum.
Resonant coupling to a biexciton (X2) at ω + ωLP0 ' −EB

(dashed line) causes a splitting of the bare lower polariton
into attractive and repulsive branches, as well as a blue-shift
of the upper polariton. For this illustration, we take the σ+

polariton density n = mXΩR/8π, detuning δ = −ΩR/3, and
EB = ΩR.

citons immersed in an electron gas [23, 24], as well as the
relation of this to the Fermi-edge singularity [25].

Here we will investigate correlated states of exciton-
polaritons using the Bose polaron, which is naturally re-
alized by macroscopically pumping a polariton state in a
given circular polarisation (↑), and then applying a weak
probe of the opposite (↓) species (Fig. 1). Indeed, ex-
perimental groups have already carried out polarization-
resolved pump-probe spectroscopy in the transmission
configuration [27, 28]. However, such measurements
were interpreted in terms of a mean-field coupled-channel
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model involving the vacuum biexciton state [29], which
neglects the possibility of correlated polaronic states. In
contrast, by considering a polaronic description of the
state, our Letter shows the important role played by
multi-point quantum correlations, how the character of
the many-body polaronic state depends on density, and
the role of multi-polariton continuum in influencing the
transmission spectrum.

To model the quantum-impurity scenario, we go
beyond mean-field theory and construct impurity ↓-
polariton wave functions that include two- and three-
point quantum many-body correlations. Such strong
multi-point correlations can be continuously connected
to the existence of multi-body bound states in vacuum,
namely ↓↑ biexcitons and ↓↑↑ triexcitons [30] (higher-
order bound states have not been observed, as far as we
are aware). We calculate the ↓ linear transmission probe
spectrum following resonant pumping of ↑ lower polari-
tons, as illustrated in Fig. 1(b), and we expose how multi-
point correlations emerge as additional splittings in the
spectrum with increasing pump strength. There is thus
the prospect of directly accessing polariton correlations
from spectroscopic measurements performed in standard
cryogenic experiments on GaAs-based structures [27, 28]
— i.e., many-body correlations have measurable effects
on transmission measurements, and do not require mea-
surements of higher order coherence functions in order to
be observed. Moreover, our theory requires few parame-
ters which can be measured independently, and thus al-
lows one to predict the pump-probe spectrum in other
materials, such as transition metal dichalcogenides at
room temperature [31, 32].

Model.– We consider a spin-↓ impurity excited by a
σ− probe immersed in a gas of spin-↑ lower polaritons
excited by a σ+ pump (see schematic in Fig. 1). The ↓
probe is optical, but the coupling between ↑ and ↓ po-
larizations arises through the excitonic component. To
capture the effect of the medium on this photonic com-
ponent, it is natural to describe the impurity in terms of

excitons (b̂k), with dispersion ωXk = k2

2mX
, and photons

(ĉk) with dispersion ωCk = k2

2mC
+δ. Here δ is the photon-

exciton detuning (we take ωX0 = 0), mX is exciton mass
and mC is the photon mass — in this Letter we always
take mC/mX ' 10−4. The photon-exciton coupling of
strength ΩR leads to the formation of lower (LP) and
upper (UP) exciton-polaritons [33, 34] with dispersion:

ωLP
UP

k
=

1

2

[
ωXk + ωCk ∓

√
(ωCk − ωXk)2 + Ω2

R

]
. (1)

We choose a pump that is resonant with the lower po-
laritons at zero momentum, yielding a macroscopically
occupied single-particle k = 0 state. Thus, we use the

following Hamiltonian [26] (setting ~ and the area to 1):

Ĥ =
∑
k

[
ωXkb̂

†
kb̂k + ωCkĉ

†
kĉk +

ΩR

2

(
b̂†kĉk + h.c.

)]
+
∑
k

(ωLPk − ωLP0) L̂†kL̂k+
∑

k,k′,q

gkk′L̂†kb̂
†
q−kb̂q−k′L̂k′

+
√
n
∑
k,q

gk0 b̂
†
q−kb̂q

(
L̂†k + L̂−k

)
, (2)

which is measured with respect to the energy of the Bose
medium in the absence of excitations, ωLP0n, where n is
the medium density. Since only the ↑ LP mode is occu-
pied, we simplify our calculations by writing the medium
in the polariton basis, with the finite-momentum LP cre-
ation operator L̂†k and excitation energy ωLPk − ωLP0.
In order to extract the photon transmission, we however
work with exciton and photon operators for the impu-
rity. For simplicity, we have assumed that the polariton
splitting and detuning are independent of polarization;
however it is straightforward to generalize our results to
polarization-dependent parameters.

We model the ↑-↓ interactions between excitons us-
ing a contact potential, which in momentum space is
constant with strength g up to a momentum cutoff Λ.
This is reasonable, since typical polariton wavelengths
∼ 1/

√
mCΩR greatly exceed the exciton Bohr radius that

sets the exciton-exciton interaction length scale [35, 36].
The exciton-polariton coupling in Eq. (2) is given by
gkk′ = g cos θk cos θk′ , with the Hopfield factor [33]

cos θk =
1√
2

√
1 +

ωCk − ωXk√
(ωCk − ωXk)2 + Ω2

R

, (3)

which corresponds to the exciton fraction in the LP state
at a given momentum. As is standard in two-dimensional
quantum gases (see, e.g., Ref. [37]), the coupling constant
and cutoff are related to the biexciton binding energy
EB (which we define as positive) through the process of
renormalization:

− 1

g
=

k<Λ∑
k

1

EB + 2ωXk
=
mX

4π
ln

(
Λ2/mX + EB

EB

)
. (4)

This treatment of the ultraviolet physics is justified as
long as the biexciton size greatly exceeds that of the exci-
ton, which is the case when the masses of the electron and
hole making up the exciton are comparable [38]. We ne-
glect interactions in the medium for simplicity — in [26]
we show that adding interactions in the medium does not
significantly change the results.
Probe photon transmission.– The transmission
T (k, ω) of a photon at frequency ω and momentum k
is related to the photon retarded Green’s function [39]
via T (k, ω) = |GC(k, ω)|2, where we ignore a constant
prefactor that only depends on the loss rate through the
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FIG. 2. Normal incidence pump-probe transmission T (0, ω) as a function of the photon-exciton detuning and the rescaled probe
energy (relative to the LP energy) for increasing pump densities: (a) n=0, (b) n = mXΩR/16π and (c) n = mXΩR/4π. In the
experimentally realistic case of ΩR = 3meV, this corresponds to densities (b) n = 3× 1010cm−2 and (c) n = 1.25× 1011cm−2.
In both cases we take EB = ΩR, and a broadening Γ = ΩR/10. The lower and upper polariton energies in the absence of
the medium are shown as black solid lines. The dashed white lines indicate the locations of the vacuum biexciton (X2) and
triexciton (X3) resonances at ω + ωLP0 = −EB and ω + 2ωLP0 = εT , respectively, with triexciton energy εT ' −2.4EB [26].

mirrors. To evaluate this, we note that only the exciton
component of the impurity interacts with the medium.
Then, in the exciton-photon basis, the impurity Green’s
function has the form of a matrix,

G(k, ω) =

(
G

(0)
X (k, ω)−1 − ΣX(k, ω) −ΩR/2

−ΩR/2 G
(0)
C (k, ω)−1

)−1

,

(5)

where GC ≡ G22. Here, the exciton and photon Green’s

functions in the absence of interactions are G
(0)
X,C(k, ω) =

1/(ω − ωX,Ck + i0), respectively, where the frequency
poles are shifted infinitesimally into the lower complex
plane. Importantly, Eq. (5) is an exact relation within
the Hamiltonian (2), which highlights how any approxi-
mation to the probe transmission arises from the calcu-
lation of the exciton self-energy ΣX.

In the following, we evaluate the photon Green’s func-
tion by using the truncated basis method (TBM) [19].
Within this approximation, the Hilbert space of impurity
wave functions is restricted to describe only a finite num-
ber of excitations of the medium. The Green’s function
can be found (as discussed below) by summing over all
eigenstates in this basis. In the context of ultracold gases,
such an approximation has been shown to successfully re-
produce the experimentally observed spectral function of
impurities immersed in a Bose-Einstein condensate [10],
as well as the ground state [40, 41] and coherent quan-
tum dynamics of impurities in a Fermi sea [17]. As such,
the TBM is an appropriate approximation for the inves-
tigation of impurity physics, both in and out of equilib-
rium. Note further that the TBM in principle allows us
to investigate other dynamical observables [19], such as
higher-order coherence functions [42].

Impurity wave function. – To capture the signatures
of strong two- and three-point correlations in the probe
transmission, we introduce a variational wave function
containing terms where the impurity is dressed by up to

two excitations of the medium:

|Ψ〉 =

(
γ0ĉ
†
0 + α0b̂

†
0 +

∑
k

αkb̂
†
−kL̂

†
k

+
1

2

∑
k1k2

αk1k2 b̂
†
−k1−k2

L̂†k1
L̂†k2

)
|Φ〉 . (6)

Here |Φ〉 is the coherent state describing the medium
in the absence of the impurity, and we consider a σ−
probe at normal incidence, where the total momentum
imparted is zero. We take advantage of the fact that the
large mass difference between photons and excitons acts
to suppress terms in the wave function containing impu-
rity photons at finite momentum — i.e., terms such as
γkĉ
†
−kL̂

†
k and γk1k2

ĉ†−k1−k2
L̂†k1

L̂†k2
are far detuned in en-

ergy from the other terms in the wave function, and have
thus been neglected. We then find the impurity spectrum
by solving Ĥ |Ψ〉 = E |Ψ〉 within the truncated Hilbert
space given by wave functions of the form (6). This pro-
cedure yields a set of coupled linear equations that we
solve numerically [26].

Within the TBM, once all eigenvalues and vectors of
the linear equations are known, the photon Green’s func-
tion can be written as [26]:

GC(0, ω) '
∑
n

|γ(n)
0 |2

ω − En + iΓ
. (7)

The sum runs over all eigenstates within the truncated
Hilbert space, picking out the weight of the photon term
from each. The factor iΓ introduces broadening because
of microcavity finite lifetime effects. For simplicity we
take it to be independent of the state, which corresponds
to considering equal exciton and photon lifetimes. This
does not qualitatively affect the results of our work.
Results.– In Fig. 2 we show our calculated normal in-

cidence pump-probe transmission as a function of the
photon-exciton detuning and the probe frequency. In
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the limit of vanishing pump power, Fig. 2(a), the probe
transmission is given by the single-particle LP and UP
branches as expected [33, 34], with the relative weights
varying according to the photonic fraction of each branch.
On increasing the pump strength, we observe first one
and then two additional branches appearing with clear
avoided crossings, as depicted in panels (b) and (c).
This happens in the vicinity of where the LP and UP
branches become resonant with either a biexciton (X2)
or a triexciton (X3) state: Indeed, recalling that we set
the k = 0 exciton energy to zero, the crossings be-
tween solid and dashed lines correspond to the zero-
density resonance conditions ω∗ + ωLP0 = −EB and
ω∗ + 2ωLP0 = εT , where εT is the vacuum triexciton
energy, and ω∗ ∈ {ωLP0, ωUP0}. The resonant behav-
ior results in an intriguing transmission spectrum, where
both lower and upper polaritons split into red-shifted at-
tractive and blue-shifted repulsive polaronic quasiparticle
branches due to the X3 and X2 resonances. Furthermore,
at sufficiently large densities, we see that the two LP re-
pulsive branches smoothly evolve into the corresponding
attractive and repulsive branches of the UP state.

It is important to distinguish the nature of the po-
laron state we describe here from the mean-field coupled-
channel picture described elsewhere [27, 28], which, at
low densities, produces a qualitatively similar spectrum.
In the coupled-channel model, there is an anticrossing
between the polariton branches and a pre-formed molec-
ular state. By contrast, the X2 splitting described in
this Letter is a beyond-mean-field many-body effect due
to two-point correlations which are enhanced by the biex-
citon resonance. Similarly, the appearance of additional
branches at higher densities demonstrates the emergence
of many-body three-point correlated states. Indeed, we
see that the X3 resonance position gets rapidly shifted
from the vacuum triexciton energy when increasing the
density, due to the influence of the continuum of un-
bound polariton states at high energies, see [26]. Note
that our model is likely to overestimate the magnitude
of the triexciton energy |εT |, since we have neglected the
repulsion between ↑ excitons. However, we can show that
the triexciton remains bound even when there is an ef-
fective three-body repulsion (which mimics the ↑-↑ repul-
sion [22]), and the triexciton binding energy only weakly
depends on this repulsion [26].

In order to quantify the density dependence of the two
X2 and X3 resonances for the lower polariton, we eval-
uate in Fig. 3 the minimal splittings ∆ω2,3 between re-
pulsive and attractive branches and the corresponding
detunings δ2,3 at which these anticrossings occur when
the finite lifetime broadening Γ can be neglected [26].
In the low-density limit, one can formally show that the
minimal splitting due to the X2 resonance has the form
∆ω2 ∼ cos θ0

√
nEB/mX [26]. This behavior is captured

using two-point correlations only, and indeed we see in
Fig. 3(a) that two-point correlations dominate even at

FIG. 3. (a) Minimal splitting between LP quasiparticle
branches in the transmission spectrum, and (b) photon-
exciton detuning at the minimal splitting. The splitting ∆ω3

and detuning δ3 for the lowest two branches — originating
from the triexciton resonance — are shown as solid blue lines,
where δ3 → −0.48ΩR (dotted line) in the limit n→ 0 due to
the triexciton state. The splitting ∆ω2 and detuning δ2 for
the biexciton resonance are shown as solid black lines. The
dashed black lines depict the corresponding results calculated
when including only two-point correlations (i.e., the Hilbert
space with at most one excitation of the medium).

higher densities. However, the shift in the detuning δ2
is a higher order density effect which can be affected by
three-point correlations, as illustrated in Fig. 3(b). For
the X3 resonance, the splitting ∆ω3 shown in Fig. 3(a)
approaches a linear scaling with n as n → 0. In this
case, one can show that the energy shift of the attractive
branch scales linearly with n at low densities, while the
repulsive branch only shifts upwards once δ3 moves away
from the vacuum resonance position [26]. Note that, in
the presence of broadening, a given splitting ∆ω is only
visible when ∆ω & Γ.

Implications for experiments.– As previously men-
tioned, the pump-probe protocol employed in the experi-
ments by Takemura et al. [27, 28] is similar to our impu-
rity scenario. However, Ref. [28] had a large broadening
Γ so that the splitting could not be resolved, while the
experiment of Ref. [27] employed a broad pump that pop-
ulated both ↑ LP and UP branches. Nevertheless, if we
take ΩR = EB = 3meV, then the parameters chosen for
Fig. 2(c) correspond to a density of n = 1.25×1011cm−2,
which approximately matches the parameters of Fig. 3
in Ref. [27]. Here, the splitting of the lower polariton
close to the biexciton resonance was analyzed [27]. Qual-
itatively, our results for the attractive and repulsive en-
ergy shifts agree; however the measured energy shifts are
somewhat smaller than what we find. This is likely to be
due to the broad range of ↑ states populated in Ref. [27],
which will tend to wash out the effect of the resonances
compared to when the bosonic medium is a macroscopi-
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cally occupied single-particle state.

Conclusions and outlook.– In this Letter, we have
shown how many-body correlations in the exciton-
polariton system can be directly accessed using pump-
probe spectroscopy. Such measurements are complemen-
tary to the sophisticated multi-dimensional optical spec-
troscopy techniques employed in, e.g., Ref. [43], which
require multiple phase-stable optical pulses with control-
lable delays. Furthermore, depending on the material
parameters, there is even the possibility of overlapping
biexciton and triexciton resonances, where both two- and
three-point correlations are enhanced [26]. Direct probes
of many-body correlated states can also provide stringent
bounds on the nature and spin structure of the polariton-
polariton interaction. Such an approach is complemen-
tary to measurements of blueshift (which can be affected
by reservoir excitons), and is crucial in the progress to-
wards realizing truly quantum states. Recently there
has been significant interest and some progress toward
achieving anti-bunching in emission from fully confined
photonic dots [44, 45]. However there is as yet lit-
tle known about many-body correlated polariton states.
Our results suggest that exploring impurity physics in
polariton condensates provides a route to achieve this.
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and M. Köhl, Attractive and repulsive Fermi polarons in
two dimensions, Nature 485, 619 (2012).

[16] M. Cetina, M. Jag, R. S. Lous, J. T. M. Walraven,
R. Grimm, R. S. Christensen, and G. M. Bruun, Deco-
herence of Impurities in a Fermi Sea of Ultracold Atoms,
Phys. Rev. Lett. 115, 135302 (2015).

[17] M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. M. Wal-
raven, R. Grimm, J. Levinsen, M. M. Parish, R. Schmidt,
M. Knap, and E. Demler, Ultrafast many-body interfer-
ometry of impurities coupled to a Fermi sea, Science 354,
96 (2016).

[18] F. Scazza, G. Valtolina, P. Massignan, A. Recati, A. Am-
ico, A. Burchianti, C. Fort, M. Inguscio, M. Zaccanti,
and G. Roati, Repulsive Fermi Polarons in a Resonant
Mixture of Ultracold 6Li Atoms, Phys. Rev. Lett. 118,
083602 (2017).

[19] M. M. Parish and J. Levinsen, Quantum dynamics of im-
purities coupled to a Fermi sea, Phys. Rev. B 94, 184303
(2016).

[20] Y. E. Shchadilova, R. Schmidt, F. Grusdt, and E. Dem-
ler, Quantum Dynamics of Ultracold Bose Polarons,
Phys. Rev. Lett. 117, 113002 (2016).

http://dx.doi.org/ 10.1142/9781848168121_fmatter
http://dx.doi.org/ 10.1038/415039a
http://dx.doi.org/ 10.1038/415039a
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/ 10.1038/nature05117
http://dx.doi.org/ 10.1038/nature05117
http://dx.doi.org/10.1038/nature09567
http://dx.doi.org/ 10.1038/nature05131
http://dx.doi.org/ 10.1038/nature05131
https://books.google.co.uk/books?id=TFDUBwAAQBAJ
http://stacks.iop.org/0034-4885/72/i=6/a=066501
http://stacks.iop.org/0034-4885/72/i=6/a=066501
http://dx.doi.org/10.1103/PhysRevLett.117.055301
http://dx.doi.org/10.1103/PhysRevLett.117.055301
http://dx.doi.org/ 10.1103/PhysRevLett.117.055302
http://dx.doi.org/ 10.1103/PhysRevLett.117.055302
http://dx.doi.org/ 10.1103/PhysRevLett.120.083401
http://dx.doi.org/ 10.1103/PhysRevLett.120.083401
http://dx.doi.org/ 10.1103/PhysRevLett.102.230402
http://dx.doi.org/ 10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1103/PhysRevLett.103.170402
http://dx.doi.org/10.1103/PhysRevLett.103.170402
http://dx.doi.org/10.1038/nature11065
http://dx.doi.org/10.1038/nature11065
http://dx.doi.org/10.1038/nature11151
http://dx.doi.org/10.1103/PhysRevLett.115.135302
http://dx.doi.org/ 10.1126/science.aaf5134
http://dx.doi.org/ 10.1126/science.aaf5134
http://dx.doi.org/ 10.1103/PhysRevLett.118.083602
http://dx.doi.org/ 10.1103/PhysRevLett.118.083602
http://dx.doi.org/ 10.1103/PhysRevB.94.184303
http://dx.doi.org/ 10.1103/PhysRevB.94.184303
http://dx.doi.org/10.1103/PhysRevLett.117.113002


6

[21] P. Massignan, M. Zaccanti, and G. M. Bruun, Polarons,
dressed molecules and itinerant ferromagnetism in ultra-
cold Fermi gases, Reports on Progress in Physics 77,
034401 (2014).

[22] S. M. Yoshida, S. Endo, J. Levinsen, and M. M. Parish,
Universality of an Impurity in a Bose-Einstein Conden-
sate, Phys. Rev. X 8, 011024 (2018).

[23] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink,
M. Kroner, E. Demler, and A. Imamoglu, Fermi polaron-
polaritons in charge-tunable atomically thin semiconduc-
tors, Nat. Phys. 13, 255 (2017).

[24] D. K. Efimkin and A. H. MacDonald, Many-body theory
of trion absorption features in two-dimensional semicon-
ductors, Phys. Rev. B 95, 035417 (2017).

[25] D. Pimenov, J. von Delft, L. Glazman, and M. Gold-
stein, Fermi-edge exciton-polaritons in doped semicon-
ductor microcavities with finite hole mass, Phys. Rev. B
96, 155310 (2017).

[26] See the Supplemental Material for details on the model,
the TBM equations including interactions in the medium,
and the equations for the three-body bound state. This
includes references to [46–51].

[27] N. Takemura, S. Trebaol, M. Wouters, M. T. Portella-
Oberli, and B. Deveaud, Polaritonic Feshbach resonance,
Nat. Phys. 10, 500 (2014).

[28] N. Takemura, M. D. Anderson, M. Navadeh-Toupchi,
D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud,
Spin anisotropic interactions of lower polaritons in the
vicinity of polaritonic Feshbach resonance, Phys. Rev. B
95, 205303 (2017).

[29] M. Wouters, Resonant polariton-polariton scattering in
semiconductor microcavities, Phys. Rev. B 76, 045319
(2007).

[30] D. B. Turner and K. A. Nelson, Coherent measurements
of high-order electronic correlations in quantum wells,
Nature 466, 1089 (2010).

[31] L. C. Flatten, Z. He, D. M. Coles, A. A. Trichet,
A. W. Powell, R. A. Taylor, J. H. Warner, and J. M.
Smith, Room-temperature exciton-polaritons with two-
dimensional WS 2, Scientific reports 6, 33134 (2016).

[32] N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold,
O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V.
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