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Zhu et al. [1] report direct numerical simulations of
turbulent thermal convection in two dimensions (2D)
with planar no-slip isothermal walls and Rayleigh
numbers (Ra) ranging from 108 to 1014. For the
Nusselt number (Nu) the authors report a scaling
of Nu ∼ Ra0.35 for the four data points with 1013 ≤
Ra ≤ 1014. They also decomposed Nu into contri-
butions from “plume-ejecting” (Nue) and “plume-
impacting” (Nui) regions of the spatial domain re-
porting Nue ∼ Ra0.38 for those four data points, in-
terpreting this as evidence of a so-called ‘ultimate’
regime of thermal convection characterized by bulk
heat transport scaling Nu ∼ Ra1/2 modulo logarith-
mic corrections [2].

Although hypotheses concerning the nature of
boundary layers [2] constitute one ingredient of this
system, the fundamental characterization of the state
of convection is the asymptotic Nu-Ra relation [2–4].
Zhu et al. [1] drew an arbitrary line through the final
four heat flux data [1013 ≤ Ra ≤ 1014]. When we
perform an objective least-squares power law fit to
these data we find Nu = 0.035×Ra0.332 with an em-
pirical exponent that is indistinguishable from 1/3,
the so-called ‘classical’ scaling exponent [5–7].

Moreover, the data from Ra = 108 to 1013 are ex-
tremely well described by extrapolation of a previous
fit, Nu = 0.138 × Ra2/7, from high resolution simu-
lations for 107 ≤ Ra ≤ 1010 [8]. Indeed, the power
law fit of those 5 decades of their data yields the
scaling exponent 0.289, indistinguishable (less than
1.2%) from 2/7.

Compare Fig. 1 here to Fig. 1 of [1]. The clear
deviation the full data set from pure scaling, com-
bined with the limited range of Ra (one decade) and
the small size of the data set (just four points) over
which the classical 1/3 scaling appears, precludes
definitive extrapolation to asymptotically large Ra.
Nevertheless the 2D heat transport results reported
by Zhu et al. are reminiscent of previous 3D simula-
tions [9, 10] and experiments [11–13] consistent with

crossovers from Nu ∼ Ra2/7 to Nu ∼ Ra1/3 for var-
ious Rayleigh numbers between 2 × 109 and 1011.

In summary, while Zhu et al. [1] do not report any
detailed statistical analysis of their data, we have
shown that when dividing their data into different
segments and forcing a power law fit for the last
decade as they have proposed, the reduced data set is
consistent with Nu ∼ Ra1/3—in quantitative agree-
ment with the classical theories [5–7]—not the Ra0.35

scaling reported by Zhu et al. [1]. Moreover, the re-
maining data up to Ra = 1013 are consistent with
Nu ∼ Ra2/7 scaling in qualitative accord with other
reported 2D [8] and 3D results [9–13].
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FIG. 1. Compensated plots of Nu×Ra−β vs. Ra. Circles
(top) are data of Zhu et al. [1] with β = 2/7 while squares
(bottom) are the same data with β = 1/3.

Therefore the claim by Zhu et al. [1] that their data
suggests that two dimensional convective turbulence
reaches an ‘ultimate’ regime characterized by bulk
heat transport scaling Nu ∼ Ra1/2 with logarithmic
corrections [2] is not, in fact, supported by their data.
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